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Abstract 

The mental rotation effect in depth is qualitatively different from mental rotation in the picture 
plane. The magnitude of angular difference in depth that is depicted between two static shapes has 
been thought to predict mean response time for same-different comparisons on shapes in the 
mental rotation effect. The tandem rotation effect provides a counterexample to that hypothesis. 
Two planar shapes are depicted as separated by a small and fixed angular difference in depth; the 
pair of shapes is then depicted as tilted in depth. Mean response time to compare these shapes 
varies nearly linearly with the magnitude of the yoked rotation - though angular difference is held 
constant. The slope of this response time function is very close to that for single rotation in depth. 
The tandem effect supports a claim that mean response time varies as a function of the change in 
area of planar shapes that are depicted to rotate away from the picture plane, rather than as a 
function of the angular difference of one shape from another. The tandem rotation effect is not 
found to obtain for rotations in the picture plane. A conclusion drawn from these and other results 
is that an hypothesis of mental rotation is neither necessary nor sufficient to explain changes in 
response times for the simultaneous comparison of planar shapes pictured in depth. A piecewise 
continuous trigonometric function is proposed to describe response times for the comparison of 
planar shapes that are depicted to rotate in depth. The characteristic Shepard-Metzler response 
time function for complex solids in depth is shown to be a definite integral of that trigonometric 
function. 
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1. Introduction 

The visual perception of pictures and drawings resembles the visual perception of 
nearby objects in that pictures and drawings reproduce a part of the conditions under 
which light arrives at the eyes. The perception of pictures and drawings most resembles 
the perception of solids as one stands still and looks at nearby solids. This resemblance 
is easily overstated; an observer's estimation of shape from pictures is based on 
convention in ways that the observer's estimation of the shape of nearby objects is not. 
It is a mistake to suppose that the two situations are to be explained in just the same 
way. It is also a mistake to suppose that the perception of a rotation which is pictured to 
take place in depth is to be explained in the same way as the perception of a rotation 
which takes place in the picture plane. These two conditions have been confounded in 
interpretation of what is called 'the mental rotation effect'. 

The mental rotation effect concerns the time it takes an observer to respond 'same'  or 
'different' to a pair of shapes, where the shapes differ in angular orientation, and may 
differ in handedness (or in other features). Over numbers of trials, an observer's 
response times can be correlated with magnitudes of difference in angular orientation 
between the shapes. 'Angular orientation' has been taken to denote either angular 
orientation in the picture plane or pictured orientation in depth, indifferently. The 
discoverers of the mental rotation effect (R. Shepard and J. Metzler, 1971) found 
response times to be a regular and roughly linear function of difference in angular 
orientation. They believe that the effect is evidence for a mental process of rotation. 
(The mental rotation effect will often be referred to as 'the Shepard-Metzler effect' in 
what follows. Similarly, Cohen and Kubovy (1993, p. 352) say: "the term 'mental 
rotation' . . .  is ambiguous. It sometimes refers to a mental operation that involves an 
imagined reorientation of form, and sometimes refers to a task assumed to require the 
mental operation.") 

Mental rotation is part of an explanation of perceptual phenomena by natural 
geometry. Of course observers may compare shapes with ruler and protractor or with 
theodolite and tacheometer, but this is not what is called natural geometry. Instead 
geometry is thought to be 'built into' psychological processes of visual perception, as 
though the eyes themselves could apply methods of geometry - as though the eye were 
a theodolite for the visual field. Such an explanation by natural geometry conflates 
visual comparison with physical measurement. This application of geometry is called 
natural in that it is supposed to be innate: " . . . t h e  system of constraints that governs the 
projections and transformations of such bodies in space must long ago have become 
internalized as a powerful, though largely unconscious, part of our perceptual machin- 
ery" (Shepard, 1978, p. 136). This makes the theory of vision parasitic on geometry: it 
is unclear what could be meant by a 'mental operation of rotation', except by reference 
to physical operations of rotation. Mental rotation is a thesis both about vision and about 
visual imagery, but as Pylyshyn (1981, pp. 199-200) remarks: 

" . . . t h e r e  is only one empirical hypothesis responsible for the predictive success of 
the whole range of imagistic models and . . .  nearly everything else about such 
models consists of free empirical parameters added ad hoc to accomodate particular 
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experimental results. The one empirical hypothesis is just this: When people imagine a 
scene or an eL, ent, what goes on in their minds is in many ways similar to what goes 

on when they observe the corresponding ecent actually happening." 

At first mental rotation was presented as a simple operation, a mental analogue of the 
physical operation of rotation in space. Since then the story of mental rotation has 
become far more complicated. Does this mean that the description of a simple operation 
has been embellished by detail, or could it mean that the Shepard-Metzler effect never 
did stem from the mental analogue of a simple operation? There are a couple of ways 
that the Shepard-Metzler effect might prove to be something other than the observable 
phenomenon of an analogue of rotation hidden in the mind. One is that the very notion 
of a mental process may be incoherent if it is predicated on similarity to physical 
processes, and another is that the Shepard-Metzler effect may fail to conform to basic 
facts about the physical operation of rotation. Peter Hacker (1990, p. 307) takes the 
former philosophical approach when he says: 

"But  when doing philosophy, one is prone to say 'Thinking is a mental activity', in 
order to distinguish it from physical activities. This is misleading...  Similarly, 
saying that thinking is a mental activity typically leads philosophers and psychologists 
into futile investigations about the 'materials' of thought (words, images, internal 
representations) and about mental operations allegedly constitutive of thinking (e,g. 
the psychologist's supposition that thinking about whether two drawings are of one 
and the same object at different orientations involves rotating images in mental space 
at constant velocity) . . . .  It induces the wrong pictures of thinking and generates 
misleading questions. It is, therefore, a move best avoided." 

If Hacker is correct that current psychological investigation into mental rotation is 
founded in conceptual confusion, then it is pointless to speak of a sort of rotation as 
being mental as opposed to physical. But the other psychological approach may be more 
convincing to psychologists: perhaps the Shepard-Metzler effect does not conform to 
basic facts about physical operations of rotation. 

Four empirical claims have been proposed on the hypothesis that mental rotation 
bears a simple relation to response time, as speed of rotation does with respect to time in 
kinematics. The first is that response times to decisions of 'same' or 'different' increase 
linearly on average as the angular difference between two shapes increases. (cf. R. 
Shepard and J. Metzler, 1971, p. 701; Cooper and Shepard, 1973, p. 86. Note that the 
term 'angular difference' is ambiguous with regard to the dimensionality of the shapes.) 
The second claim is that response times continue to increase as far as an angular 
difference of 180 ° , past which response times decrease at the same rate to 360 ° . The 
third claim is that this rate - the slope of the function of angular difference versus 
response times - is identical for rotation in the picture plane and for perspective pictures 
of rotation in depth (Metzler and Shepard in Shepard and Cooper, 1982, pp. 44-45 and 
50; Shepard and Judd, 1976, p. 954). The fourth is that, for pictured rotations in depth, 
the degree of similarity between the perspective traces of the two shapes in the picture 
plane has no independent effect on response times (cf. Metzler and Shepard, 1974, p. 
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168). In the final analysis, none of these claims withstands empirical scrutiny for planar 
shapes depicted to rotate in depth. 

Shepard mentions another possibility: another explanation can be given for those 
response time results. He says (in Shepard and Cooper, 1982, p. 116): " i t  may be that 
someone will be able to formulate a theory that satisfyingly accounts for this particular 
set of facts without invoking any such concepts as mental imagery or mental rotation". 
The alternate explanation supposes that observers apprehend certain geometrical invari- 
ants: geometrical properties that are preserved as light travels from reflective surfaces to 
the eyes. Shepard's (Metzler and Shepard in Shepard and Cooper, 1982, p. 64) name for 
this type of explanation is the comparison of  rotationally invariant structural codes. He 
describes how such an explanation might proceed, but does not defend this explanation 
as vigorously as his own. Shepard (Ibid.) reifies the alternate explanation in a psycholog- 
ical process, as follows: 

" . . .  the subject detects the presence and interrelationships of the basic components of 
one of the two-dimensional drawings - particularly, the variously oriented straight 
lines, the several types of vertices by which they are connected and, presumably, 
something of the structural relationships among these components within the two-di- 
mensional pattern. Then, on the basis of some higher-level processing of these 
extracted features and their interrelationships, an internal representation, code, or 
verbal description is generated for each picture separately that captures the intrinsic 
structure of the three-dimensional object in a form that is independent of the particular 
orientation in which that object happens to be displayed." 

He has made his description general, so he can address the general claims characteristic 
of this kind of explanation. Some of these claims are that: (1) observers are able to 
appreciate certain geometrical properties of drawings; (2) the relevant geometrical 
properties are properties found in plane geometry; and (3) these properties are indepen- 
dent of changes in an object's spatial orientation, and of subsequent perspective 
projection in a drawing. (Simply put, Shepard's intended properties are invariants of 
projective geometry.) Then he describes what seem to be problems or concerns with the 
approach. These are some of the response time results just mentioned: 

Result 1. Response times increase monotonically with the angular difference in orien- 
tation of the objects depicted in drawings. 

Result 2. The rate of this increase in response times is equally great for rotations in the 
picture plane as for depicted rotations in depth. 

Result 3. The increase in response times is very nearly linear for angular differences 
up to 180 ° . 

The first result may seem incompatible with an account based on invariants, because 
the relevant geometric properties are independent of orientation. If the measure of those 
properties does not covary with angular difference, how could they account for a 
positive relation between angular difference and response time? This difficulty depends 
on the claim that observers are able to detect or compute these geometrical properties of 
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drawings: that observers are able to perceive the magnitudes of those properties, or that 
they are acquainted with their magnitudes through a process of 'unconscious inference'. 
If observers were able to perceive these magnitudes exactly, their ability would explain 
nothing of the relation between angular difference and response time: the magnitudes of 
the geometric properties in question are unrelated to angular difference (the issue has 
been raised by Jolicoeur, 1990, pp. 396-397, among others). But why should one expect 
observers to perceive the exact measure of these properties? Estimates of many other 
visible properties are related to their physical magnitudes by nontrivial psychophysical 
functions, and those estimates are affected by variations in conditions of observation. 
Perhaps the perception of invariants is not exact and unbiased either; it could be affected 
by variation in other conditions - such as pictured differences in orientation. Although 
the value of a geometric invariant does not serve to explain a relation between 
orientations and response times, changes in the discriminability of invariants could serve 
to explain the relation. This would answer Shepard's first objection to the 'comparison 
of rotationally invariant structural codes'. 

Shepard's second objection to an account based on invariants depends on his second 
result: that the rate of increase in response times with angular difference is equally great 
for angular differences in the picture plane as for angular differences depicted in depth. 
Metzler and Shepard (in Shepard and Cooper, 1982, p. 66) say: 

"Nor  do such theories provide a ready account for the equivalence of the slopes of 
the reaction-time functions for the picture-plane and depth pairs. For, in order to 
explain the dependence of reaction time on angular difference, we must suppose that 
the features that are being compared are the features of the two-dimensional drawings, 
which differ more and more with angular departure, and not the features of the 
three-dimensional objects, which are the same regardless of orientation." 

This initial claim that response time functions are identical for the two cases might be 
revised if the slope of the response time function for rotation in depth were found to be 
much greater than the slope of the response time function for rotation in the picture 
plane. Such differences in slope could be taken to indicate a difference in the 'rate of 
mental rotation'. Yet such a finding could be re-interpreted in several ways. Differences 
due to dimensionality between the mental rotation effect in depth and the mental rotation 
effect in the picture plane can be attributed to complexity of shape instead, or to other 
factors. Shepard and Cooper (1982, p. 178) say: 

" . . .  most studies employing three-dimensional objects as stimuli have used simulta- 
neous presentation whereas most studies employing two-dimensional objects have 
used comparison of a single visual stimulus with a memory presentation. We suspect 
that it is this procedural difference rather than the difference in dimensionality that is 
the principal determiner of rate of mental rotation." 

Not only the method of presentation, but also the classification of stimuli has been used 
to explain apparent differences between the Shepard-Metzler effect in the plane and the 
Shepard-Metzler effect in depth. Shepard (cited in S. Shepard and D. Metzler, 1988, p. 
4) claims that all objects are represented in three-dimensional space, in effect that all 
pictorial stimuli are three-dimensional. Then he interprets the difference between 
rotation in the plane and depicted rotation in depth as a difference between rotating a 
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thin plate (i.e., that which is visible only as a thin plate) and rotating a solid form. He 
attributes differences in response times between the two conditions to this difference in 
shape, rather than to the effect of dimensionality. Consequently differences in dimen- 
sionality cannot affect response times, since by this definition there are no differences in 
dimensionality. 

Differences between rotation in the picture plane and depicted rotation in depth might 
still be construed as the effect of a change in the axis of rotation. The slope of the 
response time function does differ over several directions of the axis of depicted rotation 
(Parsons, 1987, p. 49). Lawrence Parsons claims that both the axes of rotation and the 
intrinsic geometry of the stimulus shapes will influence response times (see also 
Parsons, 1987a,1995). But Shepard conflates these effects with the effect of shape, as he 
conflated dimensionality with shape before. He interprets differences in response time 
that are occasioned by direction of rotation as differences due to relative direction of 
rotation, where direction of rotation is relative to the 'natural' axes of symmetry of the 
stimulus shape. These are axes of reflection or rotation that leave the stimulus shape 
unchanged, or which leave a component of the shape unchanged. Carlton and Shepard 
(1990, p. 181) say that " . . .  the psychological accessibility of the transformational axes 
prescribed by kinematic geometry depends on the alignment of those axes with the 
natural axes of the environmental frame and, perhaps particularly, with the inherent axes 
of symmetry of the object itself". 

By now it ought to be clear that the empirical validation of this basic claim about the 
mental rotation effect is not a straightforward matter. New results have been assimilated 
by making response times depend on shape as well as angular difference, and by altering 
what counts as a relevant description of shape. Whether it be right or wrong, the claim 
that the rate of increase in response times is equally great for rotations in the picture 
plane as for depicted rotations in depth is a claim that has been rendered indefeasible by 
plain demonstration. Therefore it is no simple objection to an account based on 
invariants, before an account based on invariants has been extended to cover a variety of 
stimulus shapes and forms. Another attempt to show a difference in response times 
between plane rotation and rotation in depth will be included in the experiments that are 
reported in this article. 

Shepard's third objection depends on his result that increase in response times with 
angular difference is very nearly linear for angular differences up to 180 degrees. Yet 
this pattern of response times differs between shapes. Pierre Jolicoeur and his co-workers 
(Jolicoeur et al., 1985, p. 125) report that response times increase linearly with the 
rotation of planar shapes in the picture plane, while they increase piecewise linearly (or 
non-linearly, one can surmise) in the picture plane rotation of shapes depicted as solid. 
(There are also differences between relatively fiat and solid shapes that are depicted to 
rotate in depth: see Bauer and Jolicoeur, 1996). (Actually response times to pairs of 
planar shapes increase up to 90 ° of angular difference from the picture plane in depth, 
and then decrease to 180 °, as we shall see. Fig. 1 provides a guide to the imagination.) 
So none of Shepard's problems or concerns with an explanation based on the perception 
of geometric invariants are telling problems: those objections can be answered. 

The reasons for and the implications of a theory based on invariants have been 
construed several different ways in explanation of the Shepard-Metzler effect. As an 
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Fig. 1. A rotation in the picture plane (illustrated by the arc of shapes) consists of a simple change in the 
orientation of a shape, while a 'rotation in depth' (illustrated by the column of overlapping shapes) consists of 
projective transformations of the shape, which serve to depict changes in orientation about an axis horizontal 
to the page. 

example, Van Gool et al. (1994, p. 559) hypothesize: "Recognition times in perception 
sometimes vary linearly with some pose parameter. Examples are mental rotation and 
scaling . . .  These results are not necessarily in contradiction to the use of invariants. A 
possible explanation of these effects would be the time needed to find the corresponding 
reference points used in the extraction of the invariants." Sometimes home truths about 
the application of geometric invariants and geometric transformations are mixed with 
narrow psychological assumptions. If, say, the discriminability of invariants decreases 



38 K.K. Niall / Acta Psychologica 95 (1997) 31-83 

monotonically with pictured rotation in depth from the picture plane, then there is a 
basis in the perception of invariants to explain the mental rotation effect. 

The example serves to emphasize that a tally of geometric invariants is not the same 
as a psychological theory of the perception of those invariants and transformations. At 
times that difference has been masked by injudicious use of language. There is an 
ambiguity to the phrase 'a theory of vision based on invariants', that can mask the 
difference between an algebra of invariants as geometric properties, and an account of 
the perception of invariants. If one finds a geometric property that is perceived 
accurately and unequivocally, one might call it an invariant, without bothering to name 
the set of transformations under which it is an invariant, or without bothering to name 
the geometry which is specified by the invariant of interest. Yet not every property that 
is perceived counts as an invariant, if 'invariant' is to retain any geometric meaning. An 
invariant is an invariant under a set of transformations, and any geometric property is an 
invariant under some set of transformations, though it may not be a 'basic'  invariant. 
Invariants under linear perspective are projective invariants (or affine invariants, if 
nearby objects are not under consideration). The importance of calling a property 'an 
invariant' lies in the property's context of transformations, and its place in geometry. 
Psychological considerations do not change what it means for a property to be an 
invariant, and this is of prime importance for any psychological account of the 
perception of invariants. The measurement of invariants in vision research should begin 
with optical considerations, not with psychological considerations. (As an example, 
Foster and Simmons (1994, p. 45) approach the 'problem of human object recognition' 
in this straightforward way. See Appendix A for more on the related 'problem of visual 
space'.) 

Our theoretical imagination can outrun our understanding when we take an uncompli- 
cated change in discriminability as evidence of a complicated mental realm. ( " I t  is 
amazing how hard it is to get back to the idea that we do, after all, normally perceive 
what is out there, not something 'in here ' " ;  Putnam, 1990, p. 251.) In due time it is the 
truth of predictions about response times rather than their source that will concern us; 
the inspiration or the original motivation for a psychological theory assumes less 
importance. So it may be for the Shepard-Metzler effect in depth: one day the effect 
may be recognized as significant, without being recognized as evidence for a mental 
process of rotation on analogy with rotation in kinematics. It may indeed be premature 
" to  propose that spatial imagination has evolved as a reflection of the physics and 
geometry of the external world" (Cooper and Shepard, 1984, p. 114). My aim is to 
change the interpretation of the Shepard-Metzler effect in depth, at least for one broad 
class of shapes, by supplanting that interpretation with a description that makes no 
appeal to the same model of physical processes. Contrary to Shepard's fourth claim 
about the Shepard-Metzler effect in depth, variation in mean response time can be 
described in terms of the perspective traces of two shapes in the picture plane. This 
alternate description relates response times to geometric invariants and geometric 
transformations, rather than to magnitudes of angular difference. The geometric invari- 
ant is a ratio of areas, that stands for the degree of compression of a shape that is 
pictured to lie at a slant in depth. This alternate description of the mental rotation effect 
in depth can be extended, to predict a novel effect, a tandem rotation effect in depth. 
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The new description does not involve rotation; all that is needed can be found in the 
picture plane, right in front of one's nose. 

2. Experiment 1: Rotation in the picture plane and rotation in depth 

There is a difference that sometimes is acknowledged between the pattern of response 
times for rotation in depth and the pattern of response times for rotation in the picture 
plane. (At other times this difference is attributed to the effect of a difference in shape or 
dimensionality between stimuli in the two conditions: see Appendix B.) The difference 
is in the slope of the regression line for the response time function over magnitude of 
angular difference. That slope is greater (i.e., steeper) for rotation in depth than it is for 
rotation in the picture plane (cf. Parsons, 1987). Under the hypothesis of mental rotation, 
this can be interpreted as a change in the rate of mental rotation; mental rotation in depth 
proceeds less quickly than mental rotation in the plane. 

This experiment is meant to demonstrate those response time differences that may 
exist between rotation in depth and rotation in the picture plane, for planar shapes. A 
second question is addressed by this demonstration as well. Mental rotation is thought to 
be a process by which shapes are compared indifferently of perspective effects. It is 
meant to be a symmetric process; the angular difference that is formed by rotating one 
shape of an unlike pair is equivalent to the angular difference of the same magnitude 
that is formed by rotating the other member of the pair in place of the first. If response 
times are not symmetric in the way angular differences are, then perhaps those response 
times do not reflect a process of comparison over angular difference at all. Instead they 
may reflect a perspective effect that applies to shapes one at a time. Another way to 
express this is to say that response times may actually reflect differences in the plane 
geometry of the display, instead of reflecting abstract operations in an imagined 
three-dimensional space. 

2.1. Method 

2.1.1. Subjects 

Eight students and employees of DCIEM (the Defence and Civil Institute of 
Environmental Medicine, North York, Ontario, Canada) were tested, of whom four were 
men and four were women. All the observers had normal uncorrected acuity. The mean 
age of the observers was 26.0 years. Each subject signed a document indicating 
informed consent in the study, as did all subjects in the other experiments that will be 
reported. 

2.1.2. Stimuli 
The shapes were presented on the graphics console of an IRIS GT microcomputer. 

The aspect ratio of the display was chosen to ensure correct perspective projection. Two 
planar pentagons were presented on each trial; they were green in colour on a black 
background, with full simulation of lighting effects. The reflectance of these shapes was 
moderately specular, as for a dull metallic surface. The ambient illumination of the 
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scene was white (the background remained black), while local illumination was blue- 
green ( R G B  0.5 : 1.0 : 1.0). Two local light sources of equal brightness were simulated. 
The light sources do not appear in any display themselves. The relative arrangement of  
these light sources and the viewpoint of  the scene can be given in terms of a system of 
three-dimensional (X,  Y, Z) coordinates. Before rotation, the shapes are conceived to lie 
in a coronal plane, the xy plane. The viewpoint distance for the scene is given a value of 
10 from the origin along the z-axis, Naturally the viewpoint lies away from the screen, 
towards the observer. The (X,  Y, Z) coordinates of  the local light sources are: (2.5, 2.5, 
30) and ( - 2.5, - 2.5, 30). The rendering of the lighting effects was complete before the 
beginning of each trial. 

Each day of testing consisted of many trials, that is, many pairs of  shapes. The 
observers used a three-button 'mouse '  device to register their responses. A small circular 
green spot appeared for three seconds between trials, to provide a fixation point. A short 
tone announced the beginning of each new trial. The sequence of trials paused when the 
observer pressed the middle button at the same time as the green spot was present. The 
sequence resumed when the middle button was pressed a second time. The observer 's  
task was to respond ' same '  or 'different '  to each pair of  shapes. 'Different '  meant either 
that the shapes differed in handedness, or that they were wholly different shapes. Shapes 
that were wholly different were projectively incongruent. The left and right buttons of 
the mouse device registered responses of  ' same '  or 'different '  (depending on the 
experimental condition). The buttons were labelled ' same '  or 'different '  as appropriate. 
Each trial was timed from onset to response; a response of ' same '  or 'different '  stopped 
the timer and ended the trial. Trials could last no longer than 20 seconds. Trials were 
re-scheduled if no response was registered in less than that time. Response times and 
decisions were tallied automatically, together with independent variables for accuracy of 
recordkeeping, Usually the entire session lasted less than an hour, though the time that 
was required to complete a sequence of trials varied from day to day. These aspects of  
the test situation were retained for the other experiments that will be reported (apart 
from a change in viewpoint in Experiment 3). 

Three pairs of  shapes (see Fig. 2) were presented in single rotation. They were 
Shapes 1 and 4, Shapes 2 and 4, and Shapes 3 and 4. 

These Pairs were presented in four arrangements or Orders. If  the shapes are {a, b}, 
then the orders are (a, a), (b,  b), (a,  b), and (b,  a). One of the shapes in each pair was 
either rotated in the picture plane (z-Axis rotation), or pictured to rotate in depth (x-axis 
rotation). These shapes were rotated at one of seven Orientations to upright: 20 °, 40 °, 
60 °, 80 °, 100 °, 120 °, and 140 °. The 'centre of  mass '  of  the shapes did not translate with 

Fig. 2. The stimuli for Experiment 1 consist of three pairs of shapes. A single shape appears as a member of 
each pair. The relative coordinates of the shapes (in reading order) are: 

Shape 1: [(9.76, 5.63), (7.76, 7.49), (6.81, 4.38), (3.92, 1.39), (8.47, 0.76)] 
Shape 4: [(6.97, 9.12), (4.44, 2.17), (4.38, 0.03), (6.77, 0.47), (9.64, 5.17)] 
Shape 2: [(4.60, 0.97), (4.70, 2.82), (4.31, 4.12), (1.44, 6.75), (1.28, 0.57)] 
Shape 4: [(6.97, 9.12), (4.44, 2.17), (4.38, 0.03), (6.77, 0.47), (9.64, 5.17)] 
Shape 3: [(4.52, 4.88), (5.00, 3.06), (6.93, 6.09), (8.95, 9.56), (5.20, 6.08)] 
Shape 4: [(6.97, 9.12), (4.44, 2.17), (4.38, 0.03), (6.77, 0.47), (9.64, 5.17)] 
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rotation of the shapes. Observers saw 56 distinct pairs of shapes on each day of testing. 
These 56 trials were randomized as a block of trials. Observers saw four Blocks each 
day; trials within each block were randomized independently. 

Different pairs of shapes were presented on separate days of testing. The rotated 
shape appeared on the left or the right Side of the display on separate days, as well. The 
order of these conditions was randomized over days for each observer. The experiment 
has a six-way (4 X 2 X 7 X 4 X 3 X 2, that is, Order X Axis X Orientation X Block X 

Pair X Side) repeated-measures design. There were a total of 1344 trials over six days 
for each observer in the experiment. 

2.2. Results 

The dependent measure for the main analysis, as for those of all subsequent 
experiments, is the natural logarithm of response time. (All further references to 
'logarithm', ' In ' ,  or ' log'  should be taken to signify natural logarithms.) The principal 
motivation for applying the logarithmic transformation is the treatment of long outlying 
response times. The effect of the transformation is not gross over the range in question; 
its effect is that the distribution of response times becomes less skewed, and the tails of 
the distribution become more symmetric (Ratcliff, 1993). Times are included for all 
responses: that is, no ' trimming' of outlying response times has been applied over and 
above the logarithmic transformation. And unless otherwise stated, response times are 
included both for correct responses and for trials on which an error occurred. 

A six-way analysis of variance showed significant effects of Axis (F (1 ,7 )=  9.55, 
p < 0.05) and Orientation (F(6,42) = 28.92, p < 0.01) on the dependent measure of log 
response time, for conditions in which 'same'  was the appropriate response. There was 
also a significant effect of Pair X Side (F(2,14) -- 7.49, p _< 0.01). This indicates that 
response times depend on the particular shape that is rotated in depth, though the 
interaction could be confounded with the effect of practice over days. The Greenhouse- 
Geisser correction was applied to the degrees of freedom used to obtain the critical F 
statistics for these comparisons (Greenhouse and Geisser, 1959). This conservative 
procedure will be applied in all further significance levels reported for analyses of 
variance. A six-way analysis of variance was also performed on the conditions for which 
'different' was the appropriate response. Again there were significant effects of Axis 
(F(1,7) = 8.65, p < 0.05) and Orientation (F(6,42) = 10.10, p _< 0.05). There was a 
significant interaction of these two factors, Axis X Orientation (F(6,42) = 7.17, p < 
0.05). The particular shape that appears as a comparison in a Pair has a significant 
effect (F (2 ,14)=  6.72, p < 0 . 0 5 ) ,  as does the member of a pair that is rotated 
(Pa i r  X Side: F(2,14) = 15.20, p < 0.01). The latter findings are consonant with the 
dependence of response times on stimulus differences found by Petrusic et al. (1978, p. 
142), who say: "The  present finding of stimulus-dependent rotation speed is trouble- 
some for the conventional view of the process of mental rotation." 

The interaction of Axis X Orientation was not significant for the conditions in which 
'same'  was the appropriate response (F(6,42) = 5.19, NS). Certainly a stringent crite- 
rion has been applied, but an interesting reason can be given for the nonsignificance of 
this interaction term. A difference in the slope of the mental rotation function between 
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Fig. 3. Response times for depicted rotation in depth display a different pattern than do response times for 
rotation in the picture plane in Experiment 1. Mean response times (in lnseconds) are plotted against angular 
difference (in degrees); standard error bars are included. Mean response times for 'same'  responses increase 
regularly with rotation in the picture plane (open circles), while mean response times for 'same'  responses 
increase regularly only to 90 ° of angular difference with rotation in depth (filled circles). Only correct 
responses of 'same'  were included for these calculations; each mean is based on a maximum of 384 trials. The 
results foreshadow the model that will be presented in Fig. 15, and they parallel the results presented in Fig. 
16. 

rotation in the picture plane and depicted rotation in depth will be reflected in a 
significant Axis × Orientation interaction, given that response times increase regularly 
over the range of angular difference. Response times are expected to increase monotoni- 
cally from 0 ° to 180 ° of  angular difference, yet they do not for the depicted rotation of 
planar shapes in depth (see Fig. 3). Here the mean response time for an angular 
difference of 140 ° is appreciably less than the mean response time for an angular 
difference of 100 °, both for 'same' responses to rotation in depth, and for 'different' 
responses to rotation in depth. This incidental finding suggests that the maximum value 
of the mental rotation function for planar shapes lies near 90 ° of  angular difference from 
the picture plane, not at 180 ° as for rotation within the picture plane. 

2.3. Discussion 

There is a difference in response times between depicted rotation in depth and 
rotation in the picture plane. This difference has not been shown as a simple difference 
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in the slope of two response time functions (for 'same' pairs), because of another 
finding. Response times do not increase monotonically with angular difference from 0 ° 
to 180 ° for planar shapes depicted to rotate in depth. Instead response times increase 
regularly from 0 ° to 90 ° of angular difference, and decrease beyond 90 °. (A strict 
difference in slope within a quadrant will be demonstrated in a subsequent experiment: 
Experiment 3.) Also, it does seem to matter which shape is rotated when two different 
shapes are presented in a pair. This may be taken to indicate that response time 
differences do not reflect a symmetric process of comparison that is applied to a pair of 
shapes. Those response time differences could simply be occasioned by foreshortening. 
Let us address Shepard's objections to the straightforward interpretation of response 
time differences between depicted rotation in depth and rotation in the picture plane. 
Planar shapes were used in this experiment throughout, and the conditions of depicted 
rotation in depth and rotation in the picture plane were identical though run on separate 
days. Then it cannot be objected that depicted rotation in depth was presented as a 
simultaneous visual task while rotation in the plane was presented as a task for memory. 
Nor can it be objected that solid stimuli were used for depicted rotation in depth, while 
thin plates were used for rotation in the plane. The distinction between the rotation of 
fiat shapes and the rotation of solid shapes in flat depiction may still be an important 
distinction, but for plane figures at least there does exist a reliable difference in response 
times between rotation in the picture plane and depicted rotation in depth. The result is 
not original, but it did require support in face of the objections that have been raised. 

3. Experiment 2: Single rotation and tandem rotation in depth 

If one accepts the notion that angular difference in depth is confounded with change 
in discriminability due to pictorial perspective in demonstrations of the mental rotation 
effect, a question remains: how can one disentangle these supposed influences on 
response times? A clearer pattern may emerge for response time results when the 
specific values of geometric variables are taken into consideration. Prospects are better 
when a measure of change in area is considered: the ratio of the projected area of a 
shape to its original area. Yet that quantity varies with the cosine of the angular 
difference of a planar shape from the picture plane. Then changes in response time that 
are associated with this quantity should be disambiguated from changes due to angular 
difference. If the two can be disambiguated, changes in response time may finally be 
associated with this ratio of areas rather than with the magnitude of angular difference. 
And then changes in response time that have been attributed to angular difference plus 
'similarity of shape' or 'complexity of shape' could prove to be interpretable as changes 
associated with a ratio of areas, or with a ratio of areas plus other basic geometric 
quantities. 

One important distinction between angular difference and the effects of perspective is 
that perspective effects like foreshortening depend on the profile of a shape relative to 
the picture plane, while the measure of angular difference between two shapes does not 
depend on the picture plane. Since the angular difference between two planar shapes can 
be manipulated independent of the angle at which they stand to the picture plane, the 
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effects of perspective can be disambiguated from those of angular difference. The 
angular difference between two shapes can be held constant while their angle to the 
picture plane is varied. There is a brute method and a subtler method to perform this 
manipulation. The brute method is to set the two shapes in the same plane, and to vary 
its orientation to the picture plane. In orthogonal projection, the projections of those two 
shapes will be identical for any orientation of the plane, if the centres of the shapes are 
positioned at the same distance to the axis of rotation. The subtler method is to separate 
the two shapes by a small and fixed magnitude of angular difference, and then to vary 
the yoked orientations of the two shapes with respect to the picture plane. The 
projections of the two shapes will differ from one another, for most values of their 
yoked orientation to the picture plane. Let us call this the tandem rotation of planar 
shapes in pictured depth. In this article the orientation of the farthest shape to the picture 
plane will be used as a measure of tandem rotation. When shapes are subject to single 
rotation and to tandem rotation at different times, the effects of angular difference can be 
contrasted with the effects of pictorial perspective. If there is a process of mental 
rotation based on angular difference, tandem rotation should not produce systematic 
changes in response times, since in tandem rotation angular difference is constant. But if 
pictorial perspective is to blame for the changes in response times that are characteristic 
of the Shepard-Metzler effect in depth, then response times should vary with the 
magnitude of tandem rotation. The slope of the regression line for the response time 
function in tandem rotation should be equal to the slope of the regression line for the 
response time function in single rotation. In this way, a simple manipulation may lead to 
a better description of the 'mental rotation' of planar shapes in depth. 

3.1. Method 

3.1.1. Subjects 
The eight observers were the same ones who participated in Experiment 1. 

3.1.2. Stimuli 
Two pairs of flat pentagonal shapes were displayed at different orientations to the 

picture plane. The first pair consists of Shapes 1 and 3, (Fig. 4), while the second pair 
consists of Shapes 2 and 4. Two shapes from a pair are displayed on each trial; that is, a 
shape can be matched with a copy of itself or with its partner in a pair. The partners of a 
pair count as different: these shapes are different in projective terms. Each shape is 
presented in the picture plane, or at one of six orientations to the picture plane: 12.5 ° , 
25 °, 37.5 °, 50 °, 62.5 °, or 75 °. These can be called pictured rotations in depth, or rotations 
about the x-axis of the picture plane. The pairs of shapes are shown either in single 
rotation or in tandem rotation. In single rotation, one shape is fixed in the picture plane 
while the other shape is pictured to have been rotated in depth. In tandem rotation, both 
shapes are pictured to have been rotated in depth but there is a small initial difference in 
angle between the two. This may be made clearer by an example. A series of shape pairs 
(Fig. 5) in single rotation can have the following angular orientations to the picture 
plane: (0 °, 12.5°), (0 °, 25°), (0 °, 37.5°), (0 °, 50°), (0 °, 62.5°), and then (0 °, 75). A similar 
progression of shape pairs (Fig. 6) in tandem rotation is: (0 °, 12.5°), (12.5 °, 25°), (25 °, 
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Fig. 4. The stimuli for Experiment 2 consist of four shapes. They are two pairs of shapes that are quite 
different in projective terms. With reference to Fig. 2, one pair consists of (Shape 1 and Shape 3), while the 
other pair consists of (Shape 2 and Shape 4). 

37.5°), (50 °, 62.5°), and (62.5 °, 75°). Single  rotat ion alters both the angular  difference of  
the two shapes and the angular  difference of  one shape from the picture plane. Tandem 

rotation alters the angular  difference of  both shapes from the picture plane, but  holds 
constant  the angular  difference be tween  the shapes themselves.  

3.1.3. Procedure 

Observers  were asked to decide if  pairs of shapes were ' the same'  or 'd i f ferent ' ,  
where ' s ame '  mean t  unchang ing  in shape despite rotation or foreshortening.  Observers  

Fig. 5. The Shepard-Metzler effect in depth has been thought to link increasing angular difference to 
increasing response times. Here two planar shapes are depicted to have angular differences of 25 ° (top pair), 
50 ° (middle pair) and 75 ° (lower pair). 
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saw 48 distinct pairs of  shapes on each day of  testing. The order of  these pairs was 
randomized in blocks of  48 trials. Observers saw five blocks of  trials each day. The two 
manners of  rotation (single and tandem) were presented on different days. The left-right 
position of  the shape that was rotated farthest from the picture plane was alternated on 
different days. There are four combinations of  these two manners of  rotation and two 
left-fight positions. The order of  these four conditions was balanced across observers 
over the four days of  testing. There are a total of 960 trials for each of  eight observers in 
the experiment. 

The 48 combinations of  shapes within a block of trials represent the combination of  
four factors: Pair (two pairs of  shapes), Orientation (six conditions of  pictured 
rotation), Same~Different (the members of  the pair count as the same shape or as 
different shapes) and Order (left-right arrangement of  each pair of  shapes). If the 
members of  a pair are {a, b}, then the distinct left-fight arrangements of  the members in 
the display are (a, b), and (b, a). Five Blocks of trials were administered each day. 
Two conditions of  left-right precedence of  rotation (Side) and two manners of  rotation 
(Rotation Type) were presented in four days of  testing. Then the experiment has a 
seven-way (2 X 6 X 2 X 2 X 5 X 2 X 2, that is, Pair X Orientation X Same~Different X 
Order X Block X Side X Rotation Type) repeated measures design. 

3.2. Results 

The results for ' same'  trials will be reported separately from the results for 'different' 
trials; the results for ' same'  trials will be reported first. A six-way analysis of  variance 
showed a significant effect of  change in Orientation on the dependent measure of  the 
logarithm of response time (F(5,35) = 33.20, p < 0.01). An effect of Pairs of shapes 
(F(1,7) = 18.32, p < 0.01), and an effect of  practice within days (Block: F(4,28) = 
16.98, p < 0.01) were found to be significant. No other effects were found to be 
significant. Latencies for Shape 1 were shorter in general than latencies for Shapes 2, 3, 
and 4, though all followed a linear trend with increasing angle of  rotation to the picture 
plane. The mean difference between latencies to Shapes 1 and 3 is 1.25 seconds. It is 
noteworthy that the conditions of  single rotation and tandem rotation (Rotation Type) do 
not have significantly different effects on the dependent measure. Some measures of 
response time and discriminability are displayed in Table 1 of Appendix C; these vary 
with angle in both single rotation and tandem rotation. 

The slopes of  the linear functions that best fit the response time data are similar for 
conditions of  single rotation and tandem rotation (see Fig. 7). The slope of  the linear 
function that relates angle from the picture plane (in degrees) and response time (in 

Fig. 6. Two planar shapes are separated from one another by a small and constant angular difference; this 
yoked pair of shapes is then depicted to rotate in depth as a unit. This tandem rotation of planar shapes in 
depth can be used to test the hypothesis that experimentally observed increases in response time are not 
associated specifically with increases in the angular difference between two shapes, but rather are associated 
with increases in the angular orientation of those shapes to the picture plane. The fixed angular difference is 
12.5 ° in this example. The closest member of the pair is depicted to have an orientation of 12.5 ° (top pair), 
37.5 ° (middle pair), and 62.5 ° (lower pair) to the picture plane. 
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Fig. 7. Mean response time in In seconds is plotted against the angle of the shape farthest from the picture 
plane (in degrees), for two conditions of the second experiment. The slope of the regression line for response 
times to shapes in tandem rotation in depth is very nearly equal to the slope of the regression line for response 
times to shapes in single rotation in depth. Each point represents the mean of 640 observations, collapsed over 
the results of eight subjects in the experiment. 

ln sec) is 156°/lnsec for single rotation, and 134°/lnsec for tandem rotation. These 
quantities were computed only for those trials on which a correct response of 'same'  
was given. (Slopes can also be computed for all trials, both correct and incorrect. These 
were 156°/lnsec for single rotation, and 148°/lnsec for tandem rotation.) Individual 
differences in response time will affect the value of such group estimates of slope. 

A six-way analysis of variance was also applied to the results for which 'different' 
was the appropriate response. Again there was a significant effect of change in 
Orientation (F(5,35) = 14.55, p < 0.01), an effect of Pairs of shapes (F(1,7) -- 40.42, 
p < 0.01), and an effect of practice within days (Block: F(4,28)= 8.94, p < 0.05). 
There were two significant interactions that involved the factor Order: Pair X Order 
(F(1,7) = 12.53, p < 0.01) and Rotation Type X Order (F(1,7) = 10.42, p < 0.05). 
There was a significant interaction of Pair × Side (F(1,7) = 5.67, p < 0.05), which was 
further complicated by a four-way interaction of Orientation X Rotation Type X Pair X 
Side (F(5,35) = 6.08, p < 0.05). These last two interactions may be interpreted as the 
effects of individual shapes under rotation, which are less marked when pairs of shapes 
are rotated in tandem. 

3.3. Discussion 

A trigonometric relation shows the difference between an account based on angular 
difference and one based on increments in area. "Now the effect on the images 
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produced by orthographic projection from a plane slanted around the horizontal axis 
simply amounts to an affine coordinate transformation of the image plane, where the 
scale of the vertical axis is contracted by a factor equal to the cosine of the angle of slant 
from the frontal parallel" (Lappin and Ahlstr/Sm, 1994, p. 236). When a plane figure at a 
slant to the picture plane is projected onto the picture plane, the area of the projection 
can be found as the area of the original, multiplied by the cosine of the angle between 
the two planes: cos 0 = (Areap/Areao). When we consider two plane figures, we may 
take the difference of these: (cos 01 - cos 02). In the limit, the rate of change of (cos 0) 
is ( - s i n  0). By contrast, the rate of change of the linear function that is supposed to 
exist between response times and angular difference will be a constant value. Suppose 
that changes in response time were linked to angular differences. Then if the angular 
difference between two planar shapes were fixed, and their yoked orientation were 
changed, response times should not change. But suppose that changes in response time 
were linked to changes in area instead (effectively, to the cosine of the angle of each 
shape to the picture plane, which represents the degree of compression of the shape). 
Then if the angular difference between two planar shapes were fixed, and their yoked 
orientation were changed, response times would be correlated with difference of change 
in area: they would vary roughly as the relative magnitude of the difference of two 
cosine functions (cos 01 - c o s  02). Now suppose that in an experiment (on the 
Shepard-Metzler effect in depth with planar shapes), the range of angular orientations 
were both truncated and coarsely sampled, say in 10 ° intervals from 10 ° to 80 ° of tilt to 
the picture plane (Fig. 8). In the absence of foreknowledge about these functions, 
(cos 0) and (cos 01 - cos 02) or ( - s i n  0) would provide an excellent fit to a linear 
function of angle in the analysis of results. A distinction does emerge clearly in the 
tandem rotation effect. 

Given the number of articles that have been devoted to the Shepard-Metzler effect, 
and given its status in the literature on cognitive psychology, a simple question comes to 
mind: why didn't anyone notice this before? The appearance of a significant curvilinear- 
ity (say, a quadratic trend) in a polynomial regression of response time over angle might 
be explained away as the influence of extraneous factors; indeed, such reports have been 
intermittent and variously interpreted. For example, Koriat and Norman (1985, p. 429) 
appeal to mental mechanism in explaining the curvilinearity of their response time 
results for the Shepard-Metzler effect in the picture plane. They propose "that 
extensive practice with a visual stimulus results in a memory representation that is 
broadly tuned, thus enabling efficient stimulus recognition over a relatively wide range 
of orientations. Small deviations from normal orientation do not require rotation before 
recognition." But still another result very like tandem rotation has been reported in the 
literature on mental rotation. Massaro (1973, pp. 416-417, esp. Exp. 2) reports 
experiments in which pairs of circles or ellipses were tilted in depth with respect to an 
observer. The two shapes were tilted at the same angle to the observer on each trial. 
Massaro was concerned to show that the perception of shapes in this situation does not 
involve a process of mental rotation. He found that "Mean percentage errors and mean 
RT increased with increases in absolute angle of rotation in a positively accelerated 
m a n n e r . . . "  (p. 417). He found no difference in his results across two d i rec t ions  of tilt 
in depth away from the picture plane. He continues: "The results disconfirm the rotation 
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Fig. 8. The data of Experiment 2 can be modelled by simple trigonometric functions. The ratio of the projected 
area of a shape that is rotated in depth to the area of its unrotated version can be found as the cosine of the 
angle between the picture plane and the plane of the shape. In tandem rotation, the difference of this ratio 
between one shape of a pair and its partner follows differences in cos 0. The rate of change of cos 0 is - sin 0 
(this is the limit when the difference between angles becomes small; note that signs have been reversed in the 
graph). When the domain of these trigonometric functions is truncated and coarsely sampled, their plots 
against 0 appear nearly linear in form, with nearly identical slopes. The regression lines have been clipped at 
+ 1.0 of the ordinates, since that is the range of the functions. 

hypothesis as a sufficient condition for the RT functions in this task.. ,  the critical 
variable is degree of rotation from the FPP [fronto-parallel plane], not rotation differ- 
ences" (Ibid.). Massaro does not compare observers' results on his task to observers' 
results in a task more like Shepard and Metzler' s. Nor does Massaro claim that a process 
of mental rotation may be unnecessary to describe the results of Shepard and Metzler's 
experiments, as well. 

Tandem rotation is a simple manipulation which leads to a new description of the 
Shepard-Metzler effect in depth. Tandem rotation elicits a response time function with a 
slope not distinguished from the slope of the response time function for single rotation. 
The new description depends on a variable that can often be measured in the picture 
plane: a ratio of areas. For single rotation of an identical pair, this quantity is simply the 
ratio of their areas. This ratio of areas is better expressed as the ratio of the projected 
area of a shape, to its area before projection. This ratio of areas is also known as the 
degree of compression due to affine transformation in perspective. Note that this 
quantity is not an affine invariant in this situation in one sense: in the sense that it is not 
an invariant of shape under perspective depiction of rotation in three dimensions. Rather 
it is an invariant in the picture plane that changes in perspective depiction: hence its 
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value changes with the severity of the affine transformation that is used to depict 
rotation in depth. 

There may be an effect of perspective on the discriminability of shapes in projection, 
which increases monotonically with the compression of the shape: an effect of foreshort- 
ening. So the crucial ratio of areas varies as the cosine of the angle of a planar shape 
from the picture plane in single rotation, as a matter of geometry. The linear increase in 
response times that is characteristic of the mental rotation effect in depth can be 
described (for the case of planar shapes only) as a linear approximation to a cosine 
function or a normalized difference of cosine functions. This alleviates a small problem: 
how response times could appear to differ between single rotation and tandem rotation at 
the smallest step size of angular difference, where the displays do not differ. (So in this 
experiment a tandem rotation of 12.5 ° produces the same configuration as a single 
rotation of 12.5 °. See Figs. 5 and 6.) The answer to this problem is that the linear 
functions are only approximations to curvilinear trigonometric functions. This interpreta- 
tion of response times in the mental rotation effect describes the effect of single rotation, 
and it describes tandem rotation in the same way, by the measure of a ratio of areas. 
This interpretation will be extended to a half cycle of rotation in the next experiment, 
where the predictions of an hypothesis of mental rotation and the predictions based on a 
ratio of areas diverge still further. 

4. Experiment 3: A prolonged test with two observers 

A systematic effect of tandem rotation on response times has been demonstrated for a 
group of observers already. One may ask if the same effect of tandem rotation can be 
demonstrated for an individual, with practice over a long period of time. The tests that 
will be reported were conducted on two observers over forty days; the range of rotation 
of the planar shapes was extended to a half cycle (180°). The predictions for response 
time that are made under the hypothesis of mental rotation diverge markedly from the 
predictions that are made on the basis of perspective effects, when this second quadrant 
(90 ° to 180 °) is considered. (In other words, here is a wider look around.) 

4.1. Method 

4.1.1. Subjects 

Two adults from DCIEM were tested. They are: observer KN (the author, 37 years of 
age, male) and observer VR (21 years of age, female). 

4.1.2. Stimuli 

The stimuli are two shapes (Shapes 1 and 3 of Fig. 9) and their plane mirror images. 
These shapes are presented under the conditions of lighting and texture that were 
described previously. There is one difference: the viewpoint was specified to be further 
from the picture plane than before (15 units + z  instead of 10). The shapes could be 
rotated either about the z-axis or about the x-axis, that is, rotated either in the picture 
plane or in depth. The shapes can lie at a variety of orientations from the upright: t5 °, 
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p, 
A 

Fig. 9. The stimuli for Experiment 3 consist of four shapes. They are two pairs of mirror-image shapes. Their 
relative coordinates (in reading order) are: 

Shape 1: [(6.38, 8.41), (4.86, 5.24), (2.39, 0.80), (3.20, 6.01), (5.96, 9.93)] 
Shape 2: [(3.61, 8.41), (5.13, 5.24), (7.60, 0.80), (6.79, 6.01), (4.03, 9.93)] 
Shape 3: [(7.39, 9.11), (8.14, 0.78), (6.79, 0.12), (5.68, 0.63), (2.08, 7.37)] 
Shape 4: [(2.60, 9.11), (1.85, 0.78), (3.20, 0.12), (4.31, 0.63), (7.91, 7.37)] 

30 ° , 45 ° , 60 ° , or 75 ° in the first  quadrant ,  or 105 ° , 120 ° , 135 ° , 150 ° , or 165 ° in the second  
quadrant .  

Pairs  of  shapes were  presented  in two manners :  in s ingle rota t ion or in t andem 
rotation.  Each  shape has a f ixed  or ienta t ion  to the picture plane.  A pair  of  shapes is in 
single rota t ion when  one shape remains  at  an upr ight  or ientat ion,  and the other  takes on 
success ive  pos i t ions  at increas ing angular  or ienta t ion to the first. The angular  d i f ference 
be tween  the two shapes increases.  A pa i r  of  shapes is in tandem rotat ion when the 
shapes  are separa ted  by  a smal l  and f ixed  angular  difference,  but  they are yoked in 
rotat ion - they rotate  together  with respect  to the pic ture  plane.  The  angular  d i f ference  
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between the two shapes remains constant (12.5 ° here), while the absolute orientation of 
the shapes changes with respect to the picture plane. 

Observers saw 160 distinct pairs of shapes on each day of testing. The order of these 
pairs was randomized in blocks of 160 trials; observers saw four blocks of trials, for a 
total of 640 pairs of shapes each day. The Side of the shape that was rotated farthest 
from the picture plane was alternated left to right on different days. The Axis of rotation 
of the shapes (z-axis or x-axis) was changed on different days, as was the type of 
Comparison shape. Either a difference in handedness or a projective difference from the 
standard shape characterized the comparison shape for a given day. There are eight 
combinations of the factors of Side, Axis, and Comparison, and these combinations 
were presented on eight separate days of testing. Eight days comprise one Series; each 
observer completed five series, or forty days in total. The order of days of testing was 
randomized within these series. Both of the observers endured 25,600 trials. 

The 160 combinations of shape pairs within a block of trials represent the combina- 
tions of five factors: Shape (there are two shapes apart from mirror images), Quadrant 
of rotation (first to 90 °, second past 90°), Orientation of the shape farthest from the 
picture plane, Rotation Type (single or tandem), Same~Different (identical or nonidenti- 
cal pairs) and Version (two arrangements of each pair of a standard and a comparison 
shape). Four Blocks of trials were given each day. The two conditions of left-right 
precedence of rotation (Side), two axes of rotation (Axis), and two different classes of 
comparison shapes (Comparison) were presented across eight days of testing. Then the 
experiment has an eleven-way factorial (2 X 2 X 5 X 2 X 2 X 2 X 4 X 2 X 2 X 2 X 5, or 
Shape X Quadrant X Orientation X Rotation Type X Same/Different X Version X Block 
X Side X Axis X Comparison X Series) repeated measures design. 

4.2. Results 

The dependent measure for the first analysis is the logarithm of response time, as 
before. The application of a single criterion in repeated statistical tests induces an 
experiment-wise error (of Type I). Experiment-wise error introduces a discrepancy 
between the nominal level of significance and the real level of significance of a test 
statistic. A solution is to apply a more stringent level of significance in all tests. In the 
present experiment a = 0.001 will be taken as the minimum acceptable level of 
significance for rejection of the null hypothesis. 

Practice effects are evident in the response times and error counts for each observer. 
Leone et al. (1993) have reported a gradual diminution of response times with practice 
in the mental rotation task. Response times decreased regularly in the present experi- 
ment, even between thirty-two and forty days of testing (Fig. 10). 

An eight-way analysis of variance was applied to each observers' response times; the 
factor of Series was used in the error term; Side and Block were replicates for these 
analyses. Some effects were found to be significant in both analyses. There was a 
significant effect of Orientation X Axis (KN: F(4 ,16)= 171.79; VR: F(4 ,16)= 90.47, 
both p < 0.001) on the dependent measure of lnresponse time, as well as an effect of 
Rotation Type (KN: F(1 ,4 )=  109.85; VR: F(1 ,4 )=  123.30, both p < 0.001; see Figs. 
11 and 12). The Orientation X Axis interaction is an expected result: response latencies 
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• Observer KN 
O Observer VR 

N = 6400 

Angular difference (degrees) 

Fig. 11. The Shepard-Metzler effect in depth is illustrated for Experiment 3. Response times increase linearly 
with angular difference, for both observers. Each dot represents the mean of 1280 observations: these come 
from a variety of conditions. 

in the mental rotation effect are longer for rotations in depth than for rotations in the 
picture plane (see Fig. 13). This difference occurs when observers are asked to compare 
shapes that are entirely distinct, just as when observers are asked to distinguish the 
handedness of shapes. These differences are mirrored in changes of discriminability; the 
errors that are shown in Table 2 of Appendix D can be used to compute measures of d' 
for these experimental conditions. 

Let us examine the slopes of the linear approximations to the response time functions 
for single rotation in the picture plane and single rotation depicted in depth, before 
carrying on with inspection of the ANOVA results. These slopes are estimated within 
the first quadrant, since it has been indicated for pictured rotation in depth that mean 
response times need not increase monotonically between the first quadrant and the 
second quadrant. Only times associated with correct responses were included in the 
calculations. The slope of the linear function that relates magnitude of depicted rotation 
in depth (in degrees) and response time (in In sec) is 141°/In sec for Observer KN, and 
118°/ln sec for Observer VR. The slope of the linear function that relates magnitude of 
angular difference in the picture plane (in degrees) and response time (in in sec) is 
markedly different: it is 294°/1n sec for Observer KN, and 535°/ln sec for Observer VR. 
(Response times on correct trials can be assumed to be less variable than correct plus 
incorrect trials, and the variability of times on incorrect trials may be related to the 
magnitude of times across conditions of angle, so that the better estimate of slope might 
be obtained from correct trials alone.) 
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Tandem rotation in depth 
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Farthest angle to picture plane (degreea) 

Fig. 12. Tandem rotation in depth is illustrated for Experiment 3. Response times increase linearly with 
angular orientation of the nearest shape to the picture plane, for both observers. Each dot represents the mean 
of 1280 observations: these come from the same variety of conditions as before. What has been assumed to be 
the effect of angular difference on response times may be the effect of angular orientation to the picture plane 
on response times. 

Continuing with the ANOVA, response times in tandem rotation were shorter overall 
than in single rotation. However, this effect was complicated by two interactions: 
Quadrant x Rotation Type (KN: F(1,4) = 81.07; VR: F(1,4) = 327.60, both p < 0.001), 
and Rotation Type XAxis× Same~Different (KN: F(1,4) = 81.82; VR: F(1,4) = 
111.80, both p < 0.001). The significant Quadrant X Rotation Type interaction indi- 
cates that although response times in tandem rotation were higher than response times in 
single rotation from 0 ° to 90 °, yet response times in single rotation were substantially 
higher than those for tandem rotation from 90 ° to 180 °. The Rotation Type × Axis × 
Same~Different interaction is expected on the assumption that there is a tandem rotation 
effect in depth which does not obtain for rotations in the picture plane. 

Responses are relatively fast for rotation in the picture plane, compared to rotation in 
depth. Among these, the extent and direction of the difference between response times to 
single and tandem rotation is altered between judgments of 'same'  and judgments of 
'different'. There is relatively little difference between response times for 'same'  and 
'different' judgments in single rotation. Responses of 'same'  come more quickly for 
tandem rotation in the plane than responses of 'different', while responses of 'different' 
come more quickly for tandem rotation in depth than responses of 'same':  a comparison 
across the vertical axis is made more easily for nonidentical pairs in this condition. 

Some other effects were significant in the analysis of one observer's results, but not 
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0.6 
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0 Observer VR 

• Ob6erver KN 

(max. n: 640) 

Angle (degrees) 
Fig. 13. The slope of the response time function is different for pairs of shapes that are rotated in depth than it 
is for pairs of shapes that are rotated in the picture plane. Angular difference in degrees is plotted against 
response time in lnseconds for the results of Experiment 3. Only trials in which 'same'  was the correct 
response are included here. Each dot represents the mean of 640 trials, minus those trials on which an incorrect 
response of 'different' was made. Standard error bars are shown. For both observers the slope of the response 
time function is markedly larger for shape pairs that have been rotated in depth. 

for the other observer. Some of  these were interactions over the Same/Different factor 
for observer KN (Quadrant X Rotation Type X Same/Different: F(1,4) = 116.07; 
Quadrant X Axis X Same/Different: F(1,4) = 995.40; Quadrant X Same/Different: 
F(1,4) = 228.55; Shape X Axis X Same/Different: F(I ,4)  = 175.34; and Axis × 
Same/Different: F(1,4) = 449.21, all p _< 0.001), while a couple of  these were simple 
effects (Orientation: F(4,16) = 163.28; Axis: F(1,4) = 277.39, both p < 0.001). The 
idiosyncratic effects for observer VR were for the factors of Quadrant and Shape, and 
the three-way interaction of  Shape, Version, and Same/Different (Quadrant: F ( 1 , 4 ) =  
124.51; Shape: F(1,4) = 141.14; Shape X Version X Same/Different: F(1,4) = 92.72, 
all p < 0.001). 

5. Discussion: A trigonometric account 

A few simple facts about planar figures that are pictured to rotate in depth can be 
used to predict patterns of  response times in the Shepard-Metzler effect. The basis for 
these predictions is the trigonometric relation cited previously: when a plane figure at a 
slant to the picture plane is projected onto the picture plane, the area of  the projection 
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Fig. 14. Rotation in depth has a different consequence than rotation in the picture plane. The shapes at the top 
of the figure are mirror images of one another, that is, they are of different handedness. A rotation through 
180 ° in depth changes the handedness of both shapes. A rotation through 180 ° in the picture plane does not 
change the handedness of either shape. Rotations in these two directions result in shapes of different 
handedness. The three black shapes are all of one handedness in the picture plane; they are opposite in 
handedness to the textured shapes. 

can be found as the area of  the original figure, multiplied by the cosine of  the angle 
between the two planes. Several other facts must be kept in mind. One is that single 
rotation in the plane, single rotation in depth, and tandem rotation in depth all begin with 
the same arrangement of  shapes. Another is that a single rotation of  a half cycle (180 °) 
in the picture plane produces the same arrangement of  shapes as does a single rotation of 
a half cycle (180 °) in depth, except for a reflection (see Fig. 14). The third fact is that 
the arrangement of  two planar shapes at 0 ° is different than their arrangement at 180 °. 
The fourth fact is that when a shape is projected edge-on at 90 ° to the picture plane, the 
area of  the projection will be at a minimum (i.e., zero). The last fact required is that the 
area of projection will increase as the shape turns away from that 90 ° orientation, and 
that area will increase with increasing angle from that orientation, regardless of  the 
direction in which the shape turns (with respect to the picture plane). 

To each of  these five geometric facts corresponds an assumption about response 
times. The first is that one and the same pair of  shapes will correspond to a single 
response time. The second is that the response time to compare two shapes rotated by a 
half cycle in the picture plane will be the same as the response time to compare two 
shapes rotated by a half cycle in depth, minus the response time needed to compare two 
mirror-image shapes. The third is that the response time to compare two planar shapes at 
0 ° is less than the time to compare them when one is rotated to 180 °, that is, less by at 
least the amount of  time needed to compare two mirror-image shapes (this is a reflection 
along a different axis than the previous reflection). Studies of the Shepard-Metzler 
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effect in the plane have shown that a measurable response time is associated with the 
comparison of mirror-image shapes, over and above the response time associated with 
the comparison of matching shapes. This increment in response time (though it may vary 
somewhat for different axes of rotation) is small relative to the time required to compare 
two shapes that differ by 90 ° in the plane. Fourth, because the projections of shapes 
increase in area as they depart from 90 ° of rotation to the picture plane (by rotation in 
depth), response times will decrease as a shape departs from that orientation. Fifth, this 
decrease in response time will be symmetric over angular orientation in depth about the 
90 ° mark. As they stand these assumptions are not consistent with the response time 
results of the Shepard-Metzler effect in the plane, though each assumption may seem 
reasonable on its own. 

The problem is that the predicted response times do not add up, nor do they come 
close. This is apparent even in the assumptions just made, because they incorporate a 
finding about response times to mirror-image pairs. The response time to compare 
mirror-image pairs is positive, that is, it is greater than the response time to compare 
identical pairs of shapes. At least this much must be added to the response time for an 
identical pair to obtain the response time for an angular difference of 180 ° in the plane. 
(Though we may be used to thinking of this transformation as a rotation of 180 °, it is 
also a simple reflection.) And a positive response time to compare mirror-image shapes 
must again be added to that response time (for an angular difference of 180 ° in the 
plane) to equal the response time for an angular difference of 180 ° in depth. But the 
overall response time function from 0 ° to 180 ° in depth ought to be decreasing and 
symmetric about 90 °, which leaves no room for a positive contribution of these 
mirror-image comparisons to the total response time at 180 ° in depth. 

This problem gets worse before it gets better. Our third assumption about response 
times was that the response time to compare two planar shapes at 0 ° is less than the time 
to compare them at 180 °, by at least the time needed to compare any two mirror-image 
shapes. A basic finding about the Shepard-Metzler effect in the plane is that response 
times increase monotonically (or linearly) with angular differences from 0 ° to 180 ° (and 
the increase is substantially greater than the time. required to perform mirror compar- 
isons about a vertical axis). Then the response time to compare two planar shapes at 0 ° 
is less than the time to compare them at 180 ° of difference in depth, by a time required 
to compare two mirror-image shapes, plus the time required to compare a 180 ° 
difference in the plane. (Again, for a planar shape, a rotation of 180 ° in depth followed 
by a reflection equals a rotation of 180 ° in the plane.) The overall response time function 
cannot be decreasing and symmetric about 90 ° for rotations in depth from 0 ° to 180 °, if 
response times for rotations in the picture plane increase at least monotonically with 
angular difference from 0 ° to 180 °, and response times are meant to be grossly additive. 
In other words, our predictions about response times could even violate the triangle 
inequality when paired with basic claims about the mental rotation effect in the plane. 
Then let us re-examine our assumptions. 

Three of the assumptions depend on the identity of picture pairs. These assumptions 
seem uncontroversial, as does the fourth, which establishes a maximum response time 
for an orientation that is difficult to discern. The fifth and last assumption is that the 
increase in response times from 0 ° to 90 ° should be symmetric to the decrease in 
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response times from 90 ° to 180 °. Here 'symmetric'  can mean two things. It can mean 
that the response time function has the same form across each domain (eg., linear with a 
fixed slope), and it can mean that the heights of the two functions are identical at 
corresponding points (in contrast to the case where the intercepts of the linear functions 
are different, though the functions have the same slope). A change in the form of the 
function would have a strong interpretation, while a change in the height of the function 
would not. Then we may postulate that the height of the response time function from 90 ° 
to 180 ° in depth is augmented by the response time attributable to the mental rotation 
effect through 180 ° in the plane, plus the response time due to reflection about a 
particular axis. The response time function will no longer be symmetric to that from 0 ° 
to 90 °, but the two functions will be the same in form. 

Our assumptions have not yet specified the form of the response time function. My 
hypothesis is that for pictured rotation in depth of a single member of a pair of planar 
shapes, observers' response times will vary with the compression in area induced by the 
depiction of rotation (in the long run). The response times will vary with the ratio of the 
projected area to the original area, that is, with the cosine of the angle depicted between 
the two shapes. Response times will vary inversely with the cosine of angular difference 
from 0 ° to 90°; it takes more time to judge a shape that is tilted to a large angle from the 
picture plane than it takes to judge a shape that is tilted only a little from the picture 
plane. Response times for rotation from 90 ° to 180 ° in depth will follow the same 
function with a different intercept and a different sign: they will follow (cos 0) + C. In 
advance of information about response times for reflection and for mental rotation of a 
half cycle in the plane, the constant C may be set to one (i.e., the cosine of 180 
degrees). It is conceivable that the effect of a mirror reversal of one figure in a rotation 
through the second quadrant would be some multiplicative effect rather than an additive 
one, so that the proper function would be C(cos 0) or some other form than (cos 0) + C. 
This seems unlikely at first, and would need further justification. An overview of these 
predictions is presented in Fig. 15. 

There are marked differences between these new predictions and the predictions that 
are usually made for the Shepard-Metzler effect in depth, on the hypothesis of a mental 
process of rotation. That hypothesis concerns angular differences, and does not predict 
changes in response time when angular difference is held constant, as in the tandem 
rotation effect. Under the hypothesis, the maximum of the response time function occurs 
at 180 ° of difference, and response times decrease symmetrically and linearly from that 
mark. The existence of a maximum response time at 90 ° is not predicted for planar 
shapes; neither is an asymmetry about the maximum for the total response time to a pair 
of shapes. Then compare the new predictions illustrated in Fig. 15 with the response 
times plotted in Fig. 16 (also see Table 2 of Appendix D). 

My claim so far is as follows: a piecewise continuous function, based on the cosine 
function, describes response time differences when observers compare flat shapes 
(where one of these shapes is pictured as rotated in depth). On first thought, this claim 
contrasts starkly with Shepard and Metzler's (197 l) claims about response time differ- 
ences when observers compare complex shapes in perspective (where pairs of solid 
shapes are pictured as rotated in depth). Shepard and Metzler describe the angular 
difference function of response time as a linear function, one sometimes increasing and 
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Fig. 15. Response time predictions for the comparison of planar shapes in depth can be drawn from the 
supposition that those times vary inversely with the ratio of the area a shape at a slant projects, to its original 
area. This quantity varies with the cosine of the angle 0 between the picture plane and the plane of the shape. 
In the first quadrant (0 ° to 90°), response times for single rotation in depth should vary as negative cosine 0. In 
the second quadrant (90 ° to 180°), response times for single rotation in depth should vary as cosine 0 plus an 
arbitrary constant, which has a maximum value of one. Response times for tandem rotation in depth are 
adjusted by a constant so that predictions coincide at 0 ° and 90 °. The response time predictions for single 
rotation in depth include an arbitrary constant, The value of this constant is given by the response time allotted 
to the 'mental rotation' of a shape in the picture plane (shown as a dashed line) plus a response time to 
compare mirror-image shapes. 

sometimes decreasing in slope. In other words, they describe a piecewise linear function: 
a triangle function. They are emphatic that the branches of this function are precisely 
linear: they find no significant quadratic or cubic trends of response time over angle for 
the results of their extensive, well-conducted experiment. Assume that Shepard and 
Metzler are right: observer's response times are well described as a piecewise linear 
function of angle, at least for the comparison of solid shapes in perspective. In 
particular, the function does not consist of a straight-line approximation to a cosine 
function. 

Then what could be the relation between response times to flat shapes pictured in 
depth, and response times to solid shapes in perspective? The response time functions 
for complex solid shapes in perspective can be considered a consequence of the 
response time function for flat shapes in perspective. That is, the response time function 
for complex solids in perspective can be thought to be composed of or built from many 
response time functions for flat shapes in perspective. 

Any solid shape can be thought to be composed of many plane sections or facets. 
Each of these plane facets makes a dihedral angle with the picture plane; the magnitude 
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Fig. 17. The normals to a complex solid shape can be considered to specify a distribution of orientations with 
respect to the picture plane. The orientations to the picture plane of the facets of a complex solid shape will 
range over a half cycle, that is, from 0 ° to 180 °. This suggestion of a variety of planes is offered as an aid to 
the imagination. 

o f  this angle is the orientat ion of  the facet to the picture plane. Any  solid shape can be 
considered for the col lect ion of  orientat ions its facets make to the picture plane (Fig. 

17). That  is, for this i l lustrat ion we require no other informat ion  about  a complex solid 
shape than the orientat ions of  its parts to the picture plane. Such orientat ions fall 

be tween  0 ° and 180 ° from the picture plane. Once  the orientat ions of  these p lane  facets 
to the picture plane are known,  a response t ime funct ion is associated with each plane 
facet, as in the account  g iven earlier. Each of  these response t ime funct ions is a 
piecewise cont inuous  cosine funct ion (Fig. 18. This piecewise cont inuous  funct ion is the 
simple extension of  the funct ion associated with single rotation that is displayed in Fig. 
15). Plane facets that differ in orientat ion to the picture plane are assigned response t ime 
funct ions (i.e., angular  funct ions of  response t ime) that differ in phase. Plane facets that 

differ by 30 ° in orientat ion are associated with angular  funct ions of  response t ime that 
differ by  30 ° in phase (as in Fig. 19). Then  the response t ime funct ion for a complex  

Fig. 16. Mean response times are plotted against angular orientation from 0 ° to 180 ° for the results of 
Experiment three. Each dot represents the mean of 640 observations. Conditions of single rotation in the 
picture plane are marked by a thick line and open squares; conditions of single rotation in depth are marked by 
filled dots; and conditions of tandem rotation in depth are marked by open dots. Data for each of the two 
observers are plotted separately, It should be noted that the 105 ° condition for tandem rotation may be 
unrepresentative. 
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Fig. 18. The piecewise continuous function displayed here is the continuation of the piecewise continuous 
function that is displayed in Fig. 15. It is proposed that comparison response times will provide a model for 
this function, specifically where planar shapes are depicted in single rotation in depth. 

solid shape can be predicted. The form of that function is the normalized discrete sum of 
the response time functions for the planar facets or parts of the shape. 

This idea can be expressed more generally. Consider the normals to a very complex 
solid shape, i.e., the directions perpendicular to tangent planes of its surface. The lines 
of these directions specify a distribution of orientations to the picture plane. Such 
orientations range from 0 ° to 180 °. A fiat shape specifies one of these orientations: what 
if indefinitely many different orientations are specified? The angular function of 
response time associated with a complex solid shape is the integral with change in phase 
over the interval from 0 ° to 180 °, of another angular function of response time: the 
piecewise continuous function that is associated with a flat shape (Fig. 20). The function 
associated with one orientation (i.e., with a flat shape) is a piecewise continuous 
function based on the cosine function. The integral of this function with change in phase 
from 0 ° to 180 ° is a piecewise continuous linear function. (The integral is evaluated in 
Appendix E.) It is a triangle function, a fraction of the amplitude of the original function 
(Fig. 20). By integration, Shepard and Metzler's response time function can be obtained 
as a generalization or consequence of the response time function set out here for flat 
shapes. Recall that this response time function for fiat shapes is based on the degree of 
compression, or the change in area of a flat shape as it is depicted to rotate in depth. So 
Shepard and Metzler's response time function can be derived from the degree of 
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Fig. 19. The facets of a complex shape may differ in orientation with respect to the picture plane. It is 
proposed that a piecewise trigonometric function predicts response time differences for each of these plane 
facets. Differences in the orientation of the facets correspond to differences in phase in the associated 
trigonometric function of angle. Several trigonometric functions that differ in phase over 45 ° are shown; they 
are marked in shades of gray. Colloquially, differences in orientations among the parts of a complex shape 
'blur' the proposed response time function over 180 ° of angle. 

compression, that is, from the severity of affine transformation, that many parts of  
complex shapes undergo in a display. (As outlined earlier, some elementary geometric 
assumptions must be made as well.) This may be a step to explanation of  the piecewise 
linear form of  the Shepard-Metz le r  function of  response times (which is a puzzle for 
Cohen and Kubovy,  1993, p. 381, as well as for many others). Two questions must be 
addressed before this idea can be extended to particular shapes of  intermediate complex- 
ity: (1) do occluded surfaces count?, and (2) do many surfaces of  the same orientation 
count for more than a single surface? 

The results of  this experiment reinforce and extend the results of  the preceding 
experiment.  Response times in the Shepard-Metz le r  effect in depth may be better 
predicted by ratios of  areas than by magnitudes of  angular difference. The differences 
between the two sets of  predictions can be made clear by experiment: tandem rotation, 
and the single rotation of  planar shapes in depth from 90 ° through to 180 ° , are two 
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Fig. 20. The Shepard-Metzler response time function for complex shapes in depth is a definite integral of the 
proposed response time function for single rotation in depth, with change in phase over a half cycle (180°). 
The characteristic piecewise linear form of the Shepard-Metzler function can be considered a consequence of 
trigonometry. It is a consequence of the compression in area of the parts of the complex shape, which 
compression is due to the depiction of the parts in perspective. Only one substantive psychological assumption 
is involved: that response time differences are proportional to the magnitude of this compression. 

examples of manipulations for which the two sets of predictions diverge. They mark the 
Shepard-Metzler effect in depth as distinct from the Shepard-Metzler effect in the 
picture plane. They may not imply that the two functions are necessarily different in 
general form: response times for rotations in the picture plane could follow a trigono- 
metric function of angle as well (this may depend on the shapes in question), or else 
they could follow a linear function of angular difference. In either case the two 
conditions of depicted rotation in depth and rotation in the picture plane will be different 
for planar shapes, and it is the effect of this distinction that we set out to show at the 
beginning. The perception of plane figures set in the picture plane is not to be explained 
in the same way as the perception of shapes depicted at a slant, or the perception of 
shapes susceptible to foreshortening. In the Shepard-Metzler effect in depth, one may 
measure a simple geometric quantity in the plane of the display, and find that observers' 
response times vary with the magnitude of that quantity. No kinematics of the mind is 
required to explain these variations in response time. An hypothesis of mental rotation is 
neither necessary nor sufficient to explain response times for the simultaneous compari- 
son of planar shapes depicted in depth. 

Still one may be left with some question whether to consider the relation of response 
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time to the ratio of areas to be mediated by the direct apprehension of a ratio of areas, or 
to consider the relation to be mediated by a process of the discrimination of compres- 
sion. That question presupposes a psychological mechanism, or a psychological process 
on the model of physical processes, and it was that confusion of a psychological process 
with physical processes which spawned the hypothesis of mental rotation. " In  general it 
seems to me better not to try to create a model . . . .  but to leave these facts as they were 
born, in an inventory of invariances under various reductions" (Boring, 1952, p. 147). I 
suggest that additional experimentation might be focussed on a detailed description of 
variations in response time with the magnitude of geometric invariants and geometric 
transformations, rather than in search of an explanation based on current notions of 
psychological mechanism. "Since everything lies open to view there is nothing to 
explain. For what is hidden, for example, is of no interest to us." (Wittgenstein, 1953, p. 
50, para. 126.) 

6. General discussion 

"The  blessed will not care what angle they are regarded from, having nothing to 
hide." 

(Auden, 1966, p. 241) 

The results of the experiments have addressed several different questions about the 
perception of planar shapes pictured to rotate in depth. The first experiment compared 
response times for rotation in the picture plane with response times for pictured rotation 
in depth. It was expected that a difference would be found in the slope of the linear 
function of response time over 180 ° of angular difference. Response time differences 
were found between the two conditions, but not exactly as expected, since response 
times did not increase monotonically past 100 ° of angular difference for pictured 
rotation in depth. The Shepard-Metzler effect in depth is different for planar shapes than 
for block shapes in that respect. Again in this experiment, response times depend on the 
particular shape that is pictured to rotate in depth. It was noted that the measure of 
change in area should be disambiguated from depicted angular difference, since the 
measure of change in area varies directly with the cosine of the depicted angle of a 
shape from the picture plane. 

A simple manipulation was used to disambiguate angular difference from change in 
area for the second experiment: the tandem rotation of planar shapes. A linear fit to a 
response time function was found for pairs of planar shapes in tandem rotation (in 
depth) under the same conditions that a linear fit to a response time function was found 
for pairs of shapes in single rotation. The slopes of the two functions were not found to 
be different. It was supposed that the measure of change in area (the ratio of projected 
area to original area) might provide an apt description for these results. Then response 
times would vary inversely as the cosine of angle from the picture plane under 
conditions of single rotation, and they would vary inversely as the normalized difference 
of cosines of two angles from the picture plane (roughly, as the negative sine of their 
median angle) under conditions of tandem rotation. The linear approximations of these 
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trigonometric functions would be expected to have the same slope under the conditions 
of the experiment. However, the main finding of this experiment is that monotonic 
increases in response time can be obtained in the Shepard-Metzler effect, when depicted 
angular differences are held constant. 

A long series of trials was conducted on two observers in the third experiment. A 
difference in the slope of the response time functions was found between rotation in the 
picture plane and depicted rotation in depth. A reversal in the relative magnitude of 
response times was found for single and tandem rotations between the first quadrant of 
rotation (0 ° to 90 °) and the second quadrant (90 ° to 180°). Other variations in response 
times are matched by variations in a measure of the ratio of the projected area of a shape 
to its original area. That is, the measure can be used, together with some basic facts of 
geometry, to make coherent predictions of response times in the Shepard-Metzler effect. 
The effect of these results is to encourage acceptance of a new description for the 
Shepard-Metzler effect in depth. This description, cast in terms of values of invariants 
and simple trigonometric functions of response time, provides an alternative to the 
current interpretation cast in terms of imagined angular differences and linear functions 
of response time. Yet there is a sense in which the description offered does not 
supersede the old interpretation. The new description concerns the degree of compres- 
sion to which a pictured shape may be subject. A measure of this degree of compression 
does not, and is not meant to provide a criterion of identity for shapes. It does not 
provide an answer to a basic question, the one that a process of mental rotation was 
supposed to answer: how do we compare shapes in perspective? A mental process of 
rotation never supplied a criterion (psychological or not) for the identity of shape, either. 
Then it remains imaginable that response time differences are epiphenomenal here: both 
to the comparison of shape by observers, and to hypothetical 'processes' of comparison 
internal to those observers. 

As mentioned in the introduction, Shepard offers some problems or concerns for an 
account of the Shepard-Metzler effect based on the perception of geometric invariants. 
Shepard's claims are based on the hypothesis that mental rotation bears a simple relation 
to response time, as speed of rotation does with respect to time in kinematics. Each of 
his four claims can now be revised for the case of planar shapes in pictured depth. First, 
it is not enough to say that response times to decisions of 'same'  or 'different' increase 
linearly on average as the angular difference between two planar shapes increases. 
Instead response times increase with the cosine of the angular difference between a 
planar shape and the picture plane, for the Shepard-Metzler effect in depth. Second, 
response times do not always increase as far as an angular difference of 180 °, past which 
response times decrease at the same rate to 360 ° . Such changes in response time depend 
on the geometry of the pictured shape. Response times increase to 90 ° from the picture 
plane for the single rotation of a planar shape in depth, after which response times 
decrease from 90 ° to 180 ° (though the function is not continuous). Third, the slope of the 
function of angular difference versus response time is not identical for rotation in the 
picture plane and for perspective pictures of single rotation of planar shapes in depth. 
The two cannot be equal, given some facts of geometry and some simple assumptions 
about the mental rotation effect. The slope of the function for rotation in the picture 
plane is less than the slope of the linear approximation to the function for single rotation 
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in depth, in each quadrant. Fourth, it is misleading to say that the degree of similarity 
between the perspective traces of the two shapes in the picture plane has no independent 
effect on response times. The perspective traces of shapes in the picture plane can be 
used to predict response times, for identical pairs in either single rotation or tandem 
rotation in depth. But a degree of similarity is not at issue, unless a ratio of areas counts 
as a measure of the similarity of two perspective traces. A ratio of areas is a definite 
quantity unlike a degree of similarity, which could denote similarity along any dimen- 
sion whatsoever. Then the problems or concerns with an approach based on geometric 
invariants become problems or concerns for an approach based on angular difference. 
They are: 

Result 1. Response times increase monotonically with the angular difference in orien- 
tation of the plane of flat shapes from the picture plane, not with their 
angular difference from one another. 

Result 2. The rate of this increase in response times is substantially greater for 
depicted rotations in depth than it is for rotations in the picture plane. 

Result 3. The increase in response times follows a trigonometric function given by 
simple geometric properties of the shapes as projected onto the picture 
plane. The range of this increase depends upon the shape in question; for 
planar shapes response times increase to 90 ° from the picture plane. 

Those are not the only problems that confront an account of the Shepard-Metzler 
effect based on angular difference. Six other questions suggest themselves: 

1. Why do some shapes take longer to rotate than others? 
2. How do observers rotate shapes in the right direction - that is, the short way around 

and not the long way around? 
3. Why do responses of 'different' to non-matching (specifically, enantiomorphic) pairs 

of shapes show the same rate of increase in response time across angular difference, 
as do responses of 'same'  to matching shapes? 

4. What accounts for the regular increase of response times associated with the tandem 
rotation effect? 

5. Why are response times to shapes in tandem rotation (up to 90 °) longer than response 
times to shapes in single rotation, in the long run? 

6. Why are response times to planar shapes in single rotation not symmetric between 
quadrants? 

This list is not intended to be exclusive or exhaustive. The first question has been 
addressed in two ways (from the standpoint of kinematics, and from the standpoint of 
dynamics), neither of which has been wholly satisfactory. Those (like Shepard) who 
emphasize a kinematic interpretation of the Shepard-Metzler effect, claim that differ- 
ences among shapes can be explained as differences in the complexity of those shapes or 
as differences in the familiarity of those shapes. Presumably the more complex a shape 
is, the more difficult it is to rotate. Yet an independent account of complexity - or 
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better, a definitive metric for complexity or familiarity - is lacking. The answer to the 
first question, in terms of an explanation by the discrimination of invariants, is that these 
shapes have different geometric properties, and different response times reflect the 
differences in specific properties. 

The second question becomes important as observers compare pairs of shapes that are 
quite different in orientation. How should an observer know to rotate a shape through, 
say 160 ° , and not 200 ° in the opposite direction? (The question is raised both by 
Corballis, 1988, and by Jolicoeur, 1990, p. 399.) Appeal to a principle of least action 
(Shepard, 1987, p. 87) may be used to justify a correct choice of direction, but this does 
not constitute an explanation. Even for small angular differences, why should one not 
start out with the wrong direction of rotation, at least sometimes? Were this to happen, 
the calculated rate of increase in response times with angular difference would be 
dampened. Indeed, observers can be instructed to rotate shapes 'the long way around' in 
the picture plane at least, as Metzler and Shepard (in Shepard and Cooper, 1982, p. 53) 
have shown. This question does not arise for the alternate explanation, which does not 
involve angular difference. 

The third question concerns response times to different pairs of shapes. It is clear 
how mental rotation might have been thought to aid the comparison of two shapes in 
space: one test of congruence is to bring two shapes into superposition by rotation or 
translation. This procedure would ensure that the initial difference between the shapes is 
not the result of foreshortening, or other effects of perspective. Yet is this procedure 
necessary for a pair of shapes whose difference is apparent at first glance - for example, 
where one shape is almost round and another is long and in places concave? A process 
of mental rotation does not seem to be necessary for the naming and categorization of 
distinctive letters of the alphabet when they are rotated in the picture plane, at least 
(White, 1980). Still, this does not explain why such a pattern of response times does 
occur - or why a process of mental rotation should be thought necessary - for shapes 
that are clearly distinct, but which differ in pictured orientation by a rotation in depth. 
Part of the answer may lie in the assumption that such a process is necessary to compare 

shapes. The pattern of response times could be associated with the discernment of 
shapes, rather than their comparison. Under an account based on invariants, the 
difference in response times between 'same'  judgments and 'different' judgments 
depends on the geometric criterion that distinguishes what counts as the same from what 
counts as different. The remaining questions arise from the results of the present studies; 
these results were not predicted by an account based on angular difference. 

The general finding of these experiments concerning the Shepard-Metzler effect in 
depth is that response times are not associated with the magnitudes of angular differ- 
ences that are depicted, but they are associated with changes in invariants that can be 
measured in the picture plane (i.e., with a measure of the degree of compression due to 
perspective). Can the findings of these experiments, in which flat polygons have been 
presented, be generalized to experiments with other shapes, say Attneave's complex 
polygons (Attneave and Arnoult, 1956), Shepard's block assemblies (R. Shepard and J. 
Metzler, 1971), or Rock's twisted wire frames (Rock et al., 1989)? Farah et al. (1994, p. 
340) sought to address the effect of such stimulus differences on the recognition of 
shape, but did not stop to measure differences in shape. Angular differences due to 
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rotation are easy to measure and depict for these shapes, but how can changes in 
invariants be measured and compared? Various techniques of measure are appropriate to 
different situations; the technique of measuring the area of a square is unlike the 
technique of measuring the volume of a mountain. The original conception of mental 
rotation abstracts from particular shape: the rotation of a hand can be compared 
immediately with the rotation of a letter of the alphabet. What this shows is that the 
original conception of mental rotation offers no account of form perception at all, since 
in our environment rotation is neutral to shape. The point can be expressed in another 
way: explanation of the Shepard-Metzler effect in depth has concentrated on operations 
or transformations, to the neglect of invariants of shape under those transformations. 
Geometry provides techniques for the assessment of those invariants. Geometry provides 
families of techniques for the assessment of invariants in vision research. Then the task 
of generalizing the present findings across different classes of shapes is a geometric task 
first of all. And while (or when) the results of different experiments with various stimuli 
can be compared by the astute application of geometry, one should not expect to 
measure one invariant by one method across many different situations. Nor should one 
expect a technology to double as a complete psychology of vision, or as an epistemol- 
ogy. 

The distinction between psychology and geometry has been effaced too long in the 
theory of vision. One reason is that investigators may fail to recognize that some criteria 
for psychological phenomena are either objective or conventional: there are criteria 
which are objective in that they specify states not inside the head or brain or mind, and 
there are criteria which are conventional in that they are not set by any one person or 
ego or observer. Given conventions about perspective, the criterion for two profiles to 
represent the same shape at a slant in a picture is an objective criterion. It can be decided 
with a straight edge, or with a ruler and a calculator, that two shapes count as the same 
in perspective. Then either observers adhere to these criteria in pronouncing 'same' and 
'different', or they do not. The criterion for two profiles to represent the same shape is 
not, and never has been, a matter of comparing the shapes of mental images. "Although 
behaviour manifesting understanding is not itself understanding, but evidence for it, 
what this is evidence for is an ability, not a state, i.e. not a persisting mental structure in 
an ethereal medium. Moreover, the evidence is criterial, not inductive, not deductive, 
nor a priori probabilifying evidence. This point is absolutely crucial." (Baker and 
Hacker, 1980, p. 615.) 

Appendix A 

The problem of 'visual space' arises when psychological criteria are sought for 
congruence of shape. A psychological answer may be expected to the question: when do 
these shapes count as the same?, in discussion of 'apparent shape' or 'phenomenal 
shape'. Perhaps the shapes that count as the same according to psychological criteria 
will not be the ones that count as the same under physical operations of translation and 
rotation in space. Perhaps there will be a geometry of apparent shape or phenomenal 
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shape that is different from the geometry of those physical operations, just as different 
geometries reflect different criteria for the congruence of shape. (Or else this search for 
psychological criteria is misconceived.) Once the congruence (i.e., the equivalence) of 
apparent shape or phenomenal shape is thought to be independent of physical operations, 
one may search for other criteria, specifically psychological criteria. This is called 
investigation of the geometry of visual space. Many geometries have been proposed as 
the geometry of visual space; their number and variety is a catalogue of geometries. 
Their proliferation shows how psychological criteria fail to constrain the equivalence of 
apparent shape, or of any shape. There is not a space that is specifically visual, or 
mental, or of the imagination. "The 'mental' is not inside anything, even though much 
that is, crudely speaking, mental can be concealed; and the 'physical' is not outside the 
mind, since the mind is not a space." (Hacker, 1987, p. 47.) 

While particular applications of geometry to vision can be definite and falsifiable, the 
program of establishing a natural geometry of vision may be extended indefinitely. Once 
it has been shown that simple and well-known geometries are unlikely designates for the 
geometry of vision, odd lesser-known geometries may be proposed instead. However, 
the program of establishing a natural geometry becomes less plausible as it is extended 
in this way. Such geometries are indeed unfamiliar, and they need to be introduced 
before their application is explained: this is an obstacle in rhetoric. Moreover, such 
geometries are regarded as special or unusual with reason. Many are special in that they 
were developed through investigation of logical consistency or mathematical complete- 
ness - they did not emerge from the practical activity of measurement. But then, the 
notion of a geometry of vision is not sustained by a practice of measurement either; 
rather, efforts at measurement are made to satisfy dictates of dogma about vision. 
Unusual geometries (including non-Riemannian geometries, but not yet non-Archi- 
medean geometries to my knowledge) are applied in a monolithic way, to force 
consistency upon various problems in the study of vision. One purpose of showing that 
basic geometric invariants are not seen uniformly and for themselves (cf. Niall and 
Macnamara, 1990) is to show that an entire class of geometries (the Kleinian geome- 
tries) provides no viable candidate for a geometry of vision. This class includes many 
familiar and applied geometries. Then if the program of establishing a natural geometry 
for vision is to be continued, the candidate geometries that remain will be either esoteric 
or difficult to apply. The rhetorical force of this argument should not be underestimated. 
Suppes (1991, p. 48) discusses the results by Foley (1972), and notes that their 
interpretation constrains the notion of visual space to "lie outside of any of the 
Riemannian spaces of constant curvature". Suppes continues: "The results however, are 
disastrous for any simple geometrical theory of visual space, for it requires us to move 
outside the framework of the standard elementary homogeneous spaces". And thus the 
proponents of natural geometry will bear a new burden of explanation: they will need to 
say how their enterprise should be at all illuminating or useful. " I  have made the point 
on several occasions that it may be the case that classical geometry is the wrong model 
for visual space.. ,  we have not yet been successful in finding general principles of 
visual perception that have the appropriate invariance properties. It is in fact an open 
question whether satisfactory general principles e x i s t . . . "  (Suppes, 1991, p. 51, and see 
Suppes, 1995). 
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Appendix B 

Though the ease with which a millstone can be turned depends on its size and shape, 
the simple magnitude of angular difference does not depend on size or shape. That is, an 
operation of rotation on a shape can be considered independent of the complexity of that 
shape. Are response times similar in the Shepard-Metzler effect, in that they are 
independent of the complexity of stimulus shapes? Cooper and Podgorny (1976, p. 504) 
claim that a dependence of response times on both angular difference and complexity of 
shape is a mark of a certain type of explanation for the mental rotation effect: an 
explanation that postulates operations on features or parts of shapes rather than whole 
shapes. Cooper and Podgorny (1976, p. 509) find no evidence of a relation between 
response time and complexity of shape, or between error rate and complexity of shape. 
They note that their conclusions are "appropriate only for the definition and range of 
complexity employed in the present experiment" (1976, p. 510). What might it mean 
that their conclusions should not be generalized beyond a definition of complexity? One 
possibility is that their failure to find an effect of complexity on response time is a 
consequence of the application of an unsuitable measure of shape complexity in the 
experiment. After all, Shepard and Metzler (in Shepard and Cooper, 1982, p. 39) did 
find differences in the slope of the response time function among three-dimensional 
objects in their effect. Yet it is difficult to interpret isolated differences in slope that 
could be associated with differences in shape. Conceivably, this difference could be 
confounded with effects such as 'familiarity' or 'naturalness'; a difference could be due 
to a short response time elicited by a familiar or natural view of a complex object (cf. 
Cooper, 1975, p. 22). An effect of shape complexity on response times would be 
demonstrated more convincingly if a measure of shape complexity were used to predict 
patterns of response times. Cooper (1975) and Cooper and Podgorny (1976) used 
Attneave and Arnoult's (1956, Method I) method to determine a value for the complex- 
ity of a variety of non-convex polygons. Cooper (1975) varied the number of vertices in 
such polygons. She found that the rank order of the slopes and the rank order of the 
intercepts of their associated 'mental rotation' response time functions did not match the 
vertices of these polygons in relative numbers. This is taken as evidence "for  the failure 
of complexity variations in the random forms to produce systematic RT differences" 
(1975, p. 30). (One may agree, or else surmise that the wrong measure of complexity 
has been applied.). Note Cooper's standard of proof: she seeks systematic differences 
that are gauged by an explicit measure of shape. Oddly enough, the demand for a metric 
of shape leaves this theory prey to accounts that postulate single 'salient landmarks' for 
comparisons, or feature by feature comparisons of shape. Hochberg and Gellman (1977, 
p. 25) note that "shapes with salient landmarks.., have lower slopes and intercepts in 
their t ime/angle function than the shapes in which these features have been made less 
distinguishable.. .".  Then they claim that this effect of the saliency of shape is not an 
effect of shape complexity, and they cite as evidence Cooper's (1975) failure to find 
significant effects of shape complexity. A similar standard of proof to Cooper's standard 
emerges in an article by S. Shepard and D. Metzler (1988, p. 10), who say: 

" . . . w e  do not yet have a satisfactory measure of complexity that reflects its 
perceptual effects (as opposed to the surface features of the physical stimulus) and 
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that applies equally to what we have called two-dimensional and three-dimensional 
stimuli. In the absence of such a measure, we cannot make a definitive determination 
of the extent to which estimated rates of mental rotation for objects differing in 
dimensionality are determined by dimensionality or by possible differences between 
these two types of stimuli in psychological complexity." 

The mental rotation hypothesis does not predict that there are shape-specific contribu- 
tions to response time, since the magnitude of a rotation (that by which the shapes are 
supposed to be compared) is independent of the internal geometry of a shape in rotation. 
Just and Carpenter (1985, pp. 166-167) consider this independence to be an advantage 
of the hypothesis of mental rotation: "Mental rotation allows subjects to compare the 
structure of two objects in considerable detail without completely understanding the 
structure of either one." Some effects of shape on response time have been found by 
experiment (eg. Yuille and Steiger, 1982), but these have been interpreted as effects of 
complexity, of dimensionality, or of similarity. Now descriptions of complexity, dimen- 
sionality, and similarity are not equivalent to a description of shape, because all three - 
complexity, dimensionality, and similarity - can be predicated of shape. If there is an 
effect of shape on response time, then the effects of complexity, dimensionality, and 
similarity may qualify that effect of shape, but they do not explain it. Initially it may 
seem difficult to demonstrate an effect of shape. A tough standard has been established 
for the demonstration of such an effect: that a metric or at least an ordering should be 
given to predict response times. Far from providing a theory of shape perception, the 
theory of mental rotation has come to rely more and more on the promise of a future 
theory of shape perception. That is to say, the theory of mental rotation now demands a 
metric of shape (cf. Hall and Friedman, 1994) which the operation of rotation cannot 
provide. Discussion over the role of complexity has not abated: the reader is referred to 
Bethell-Fox and Shepard (1988) and Folk and Luce (1987) for comprehensive discus- 
sions. 

Table 1 

Degrees Mean RT (sec) Mean RT (correct) Mean lnRT overall d'  

Rotation type: single; Axis: x-axis; All obseruers 
12.5 ° 0.88 0.88 - 0 . 2 1  3.56 

25 ° 0.87 0.86 - 0.23 3.44 

37.5 ° 1.07 1.05 - 0.09 2.90 

50 ° 1.11 1.08 - 0.02 2.64 

62.5 ° 1.17 1.18 0.03 2.47 

75 ° 1.36 1.36 0.18 1.97 

Rotation type: tandem; Axis: x-axis; All observers 
12.5 ° 1.04 1.00 - 0.14 3.57 

25" 1.21 1.18 - 0.07 3.22 

37.5 ° 1.34 1.31 0.05 2.66 

50 ° 1.44 1.31 0.14 2.28 

62.5 ° 1.57 1.59 0.20 2.02 

75" 1.65 1.68 0.27 1.60 
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Appendix C 

Table 1 displays mean response times and a measure of sensitivity by condition of 
rotation type (single or tandem) for the second experiment. Mean response time (each of 
320 trials) in seconds is shown for trials on which 'same'  was the correct response, as is 
the mean response time when incorrect trials (on which observers responded 'different') 
are eliminated. The mean of the logarithm of response time (each of 320 trials) is also 
displayed for trials on which 'same'  was the correct response. An overall measure of 
sensitivity, d', is calculated from the percentage number of times that observers 
responded 'same' ,  when 'same'  was the correct response, and the percentage number of 
times the observers responded 'same'  when 'different' was the correct response (each of 
320 trials). 

Appendix D 

Table 2 displays response times and errors by conditions of observer (KN or VR), 
rotation type (single or tandem), and axis of rotation (x-axis: pictured rotation in depth, 
or z-axis: rotation in the picture plane) for the third experiment. Mean response time in 
seconds is displayed, as is the mean of the logarithm of those response times. Each mean 
is calculated from 640 observations. Also reported are the percentage of trials (of 320 
trials) on which the observer responded 'same'  correctly ( 'hit rate'), and the percentage 
of trials on which the observer responded 'same'  when the two shapes were different 
( 'false alarm rate'). A measure of discriminability, d', can be calculated from these two 
percentages, following an independent-observation model for same/different compar- 
isons (as in Macmillan and Creelman, 1991). 

Appendix E 

(Mathematical derivation by Peter Tikuisis) 

We are interested in response time differences associated with the rotation of a pair of 
planar shapes, and the generalization of those differences. The pair of shapes consists of 
a standard shape and a comparison shape. Angle ~b represents the depicted orientation of 
the standard shape of a pair, with respect to the picture plane (It represents the initial or 
reference orientation). Angle 0 represents the depicted orientation of the comparison 
shape of the pair, with respect to the picture plane. We assume that response time 
differences follow a piecewise continuous function that is defined initially at ~b = 0 over 
a half cycle of 0, and then extended to a full cycle of 0. The angle between the two 
shapes is given by 0 - ~. (Our concern is with the magnitude of this difference, not with 
its sign.) We wish to know the form of a response time function for 0 - ~b, when ~b is 
allowed to vary over a half cycle. The form of the piecewise continuous function is 
defined for ~b=0 as: - c o s 0  from 0 = 0  to 0 = 7 r / 2  radians, and l + c o s 0  from 
0 = 7r/2 to 0 = 7r radians (see Fig. 20). This function can be extended over a cycle of 
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T a b l e  2 ( c o n t i n u e d )  

D e g r e e s  M e a n  R T  ( sec )  M e a n  l n R T  % ( ' s a m e ' / s a m e )  % ( ' s a m e ' / d i f f . )  

Rotation type: single; Axis: x-axis; Observer VR 
15 ° 1.20 0.01 98 0 

30 ° 1.25 0 .08 98 0 

45 ° 1.52 0 .22 99 4 

60  ° 1.79 0 .36  97 7 

75 ° 2.21 0 .60  92  21 

105 ° 2 .24  0 .64  85 32 

120 ° 2.05 0 .50  93 13 

135 ° 1.90 0.41 94  4 

150 ° 1.67 0 .33 97 3 

165 ° 1.56 0 .29  98 1 

Rotation ~'pe: single; Axis: Z-axis; ObserL,er VR 
15 ° 0 .95 - -0 .11  100 0 

30  ° 0 .98 - 0 . 0 8  100 1 

45 ° 1.00 - 0 .06  100 1 

60  ° 1.06 - 0.01 100 1 

75 ° 1.07 0 .00  100 1 

105 ° 1.13 0 .03 100 0 

120 ° 1.15 0 .04  99 1 

135 ° 1.14 0 .05 99  1 

150 ° 1.14 0 .05 98 0 

165 ° 1.12 0 .04  99 2 

Rom#on Ope: ~ndem; Ax~:x-axis; Obsert~er VR 
15 ° 1.16 0.01 96  0 

30 ° 1.39 0 .14  98 2 

45 ° 1.67 0 .29 98 12 

60  ° 2 .00  0 .47  98 33 

75 ° 1.88 0.43 96 91 

105 ° 1.51 0 .18 99 99 

120 ° 1.77 0.35 99 78 

135 ° 1.72 0.31 99 36 

150 ° 1.51 0 .17 99 7 

165 ° 1.16 0.01 98 0 

Rotation type: tandem; Axis: z-axis; Obsercer VR 
15 ° 0 .98  - 0.10 99 0 
30 ° 0 .93 - 0 .13 99 1 

45 ° 0 .96  - 0 . 1 1  98 0 

60 ° 0 .96  - 0.11 99 1 
75 ° 1.02 - 0 .06  100 0 

105 ° 0 .99  - 0 .08 100 0 

120 ° 1.01 - 0 .07 99 0 

135 ° 0 .96  - 0 . 1 0  99 1 

150 ° 0 .98 - 0 .09 100 0 

165 ° 0 .97 - 0.11 99 0 
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0: it is - c o s  0 from 0 =  - 7 r / 2  to 0 =  7r/2 radians, and 1 + cos 0 from 0 =  zr /2  to 
0 = 37r/2 radians (compare Fig. 18). Call these parts of  the function f and g, 
respectively. Then what is the form of the response time function for many standard 
shapes at once, that are depicted to stand in orientation anywhere from ~0 --- 0 to ~0 = 7r ? 
To make the problem easier, we divide these many shapes into two collections: those 
shapes that stand between qs-- 0 and ~0 = 7r/2 radians from the picture plane, and those 
shapes that stand between ~b = 7r and ~0 = ~r/2 from the picture plane. Or better, we 
may say there are two collections of  standard shapes: those that stand between 0 and 
+ 7r/2 radians away from ~O = 0 (~0 = 0 is in the picture plane) and those that stand 

between 0 and - ~-/2 radians away from ~O = 7r (~O = ¢r is in the picture plane). We do 
this, because the two collections are symmetric with respect to the picture plane. Call the 
family of  response time functions associated with the first collection one,  and call the 
family of  response time functions associated with the second collection two. Recall that 
each response time function has two parts. The first parts f of  collection one  we call f~, 
and the first parts f of  collection two we call f2- The second parts g of collection one  

we call gl,  and the second parts g of  collection two we call g2. One function of f~ at 
~0 = 0 is - cos 0, between 0 = - 7 / 2  and 0 = I r /2 .  The corresponding function of  f2 
at ~O= 7r is cos 0, because - c o s ( T r - 0 ) =  cos 0. Similarly, one function of  g~ at 
tp = 0 is 1 + cos 0, between 0 = z r /2  and 0 = 37r/2. Then the corresponding function 
of  g2 at ~0 = 7r is 1 - cos 0, between 0 = - 7r/2 and 0 = 7r/2, because 1 + cos(zr - 
0)  = 1 -  cos 0. (Two other trigonometric identities will be useful in what follows: 
s in (e r -  0) = sin 0, and s i n ( 0 -  7r) = - s i n  0). The collections of  parts f l  and g2 fall 
in one range, and the collections of  parts f2 and g~ fall in another range. To find the 
form of the response time function for 0 -  ~b, we find the normalized mean value of 
f l  -b g2 within their range, and the normalized mean value of f2 + g~ within their range. 
Given that we have these names for the families of  curves, we proceed to find the form 
of the overall function, as follows: 

A member of the family of  curves represented by f l  is given by: 

- cos( 0 - ~0), where 0 < ~0 < ( 0 + 7 r /2 ) .  

We wish to integrate this function over the interval. 
The mean value of  the family of  curves represented by f~ at any value of  0 is given 

by integrating the above function over the interval defined for ~0, and through normaliza- 
tion by ~0 over the same interval: 

f l  = - c o s ( 0 -  ~ ) d ~  ~0 

where the denominator is the normalization factor. Then 

~ =  - ( ( 1  + sin 0 ) / ( 0 +  r r / 2 ) ) .  

By consideration of  symmetry, 

f z  = j ~ ( T r -  0 ) ,  

= - ( ( 1  + sin 0 ) / ( 3 7 r / 2  - 0 ) ) .  
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Similarly, 

g--7 = 1 + f l (  0 -  ,n'), 

g--7 = 1 - ((1 - sin 0 ) / (  0 - r r / 2 ) ) .  

And finally, 

g2 = gl( ~r - 0) ,  

g"-7 = 1 - ((1 - sin 0 ) / ( r r / 2  - 0 ) ) .  

The overall function combines ~1 + g-7)2 and ~ + ~ in the regions - r r /2  < 0 _< r r /2  
and r r /2  < 0 < 3rr/2,  respectively; note that the final combined form must be re-nor- 
malized. 

( - ( 1  + sin 0) + r r / 2 -  0 -  (1 - sin 0 ) )  
f l  + g2 = ( 0 +  7r/2 + r r / 2 -  0) 

= 1 / 2 -  ( ( 0 +  2 ) / r r ) ,  - r r /2  < 0 < rr /2.  

( - ( 1  + sin 0) + 0 -  r r / 2 -  (1 - sin 0) )  
f2  + gl  = (3¢r/2 - 0 + 0 -  r r /2)  

= - 1 /2  + ( ( 0 -  2 ) / 7 r ) ,  r r /2  < 0 < 3rr/2.  

Together these define a triangle function, that has the piecewise linear form that is 
characteristic of response time differences for the Shepard-Metzler effect in depth with 
very complex shapes. 

The triangle function T(O) can be given the following conditional form: 

If - ~ - / 2 < 0 < I r / 2 ,  then T ( O ) = l / Z - ( ( O + 2 ) / r r ) .  (1) 

If r r / Z < 0 _ < 3 r r / 2 ,  then T ( O ) = - l / Z + ( ( O - 2 ) / r r ) .  (2) 

If 0 > 3 7 r / 2 ,  then reset 0 = 0 - 2 r r .  (3) 

(Repeat until either ( - r r /2  < 0 < rr /2)  or (7r/2 _< 0 < 37r/2).) 

If 0 < 7 r / 2 ,  then reset 0 = 0 + 2 r r .  (4) 

(Repeat until either ( -  r r /2  < 0 < 7r/2) or ( r r /2  _< 0 < 3rr/2).) 
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